独立学习 对某一领域有特殊兴趣或专长的学生可以选择跟随教员在该领域进行独立学习。这些机会要求学生具有最大的主动性、独立性和责任感。独立学习可以作为主修课程或辅修课程;无论哪种情况,学生和教师都必须能够在八天的周期内上五节课。作为辅修课程的独立学习由相应的系主任和高中部主任批准。作为主修课程的独立学习由系主任委员会批准。这些申请必须在下一年秋季学期的春季提交,并在该学年的春季学期的秋季提交。除非学生已经用尽了该系提供的课程,否则任何独立学习都不能算作第五个主修课程。
在这本开创性的本科教科书中,探索量子力学的基础,并探索这些原理如何推动新一代量子工程的发展。它使用尖端的电子、光电和光子设备解释物理和数学原理,将基础理论与实际应用联系起来;侧重于当前技术,避免历史方法,让学生快速掌握应对当代工程挑战的方法;介绍量子信息的基础,以及丰富的现实世界量子示例,包括量子阱红外光电探测器、太阳能电池、量子隐形传态、量子计算、带隙工程、量子级联激光器、低维材料和范德华异质结构;并包括教学功能,例如目标和章末家庭作业问题,以巩固学生的理解,并为教师提供解决方案。旨在激发未来量子设备和系统的发展,这是本科电子工程师和材料科学家学习量子力学的完美入门书。
摘要。多代理的编程(MAOP)范式为模型和实施代理人及其组织和环境提供了抽象。近年来,研究人员已开始探索MAOP和面向资源的Web体系结构(REST)的整合。本文通过在Jacamo-Rest上展示了一项持续的工作,这是一项持续的研究,这是一种基于资源的基于资源的网络编程平台JACAMO的抽象。jacamo- reth将多代理系统(MAS)互操作性达到新级别,不仅可以与万维网的服务或应用程序进行交互,还可以通过其他应用程序在其规范中进行管理和更新。要将开发人员界面添加到适合Web的Jacamo中,我们提供了一个关于MAOP规范实体管理的新颖概念观点。我们将其作为编程接口应用程序的中间件进行了测试,该应用程序提供了现代软件工程设施,例如连续部署和MAS的迭代软件开发。
欧盟《共同努力条例》(ESR)为每个欧盟成员国设定了到 2030 年减少以下领域温室气体排放的国家目标:国内运输(不包括航空)、建筑、农业、小型工业和废物处理。爱尔兰的 ESR 目标是到 2030 年减少 42%。爱尔兰遵守了 2021-2023 年的 ESR 承诺,并采用了灵活性。然而,爱尔兰并没有按计划实现其 42% 的目标。美国环保署最新的分析发现,即使实施更高目标(采取额外措施)情景中的政策和措施,爱尔兰到 2030 年最多只能减少 25%,仍低于 42% 的减排目标,也低于去年估计的 30% 的减排目标。在这种情况下,政府将需要从其他成员国购买统计转移或信贷。
● 导航到工具 > 全局选项 > Copilot。 ● 勾选“启用 GitHub Copilot”。 ● 下载并安装 Copilot Agent 组件。 ● 单击“登录”按钮。 ● 在“GitHub Copilot:登录”对话框中,复制验证码。 ● GitHub Copilot:登录 ● 导航到或单击链接 https://github.com/login/device,粘贴验证码并单击“继续”。 ● GitHub 将请求 GitHub Copilot 必要的权限。要批准这些权限,请单击“授权 GitHub Copilot 插件”。 ● 权限获得批准后,您的 RStudio IDE 将显示当前登录的用户。 ● 关闭全局选项对话框,打开源文件(.R、.py、.qmd 等)并开始使用 Copilot 编码!
面向创新者和制造者的计算机科学课程教导学生,编程不仅限于虚拟世界,还涉及物理世界。学生需要创造性地使用传感器和执行器来开发与环境交互的系统。通过设计算法和使用计算思维实践,他们编写程序并将其上传到执行各种真实任务的微控制器。该单元通过有意义的应用拓宽学生对计算机科学概念的理解。团队选择并解决与可穿戴技术、交互式艺术或机械设备相关的个人相关问题。在整个单元中,学生通过融合硬件设计和软件开发来学习物理世界的编程,让学生通过创建个人相关、有形且可共享的项目来发现计算机科学概念和技能。
摘要 在计算机视觉和机器人领域,具身代理有望探索其环境并执行人类的指令。 这就需要能够根据第一人称观察充分理解 3D 场景,并将其语境化为语言进行交互。 然而,传统研究更多地侧重于从全局视角进行场景级输入和输出设置。 为了解决这一差距,我们引入了 EmbodiedScan,这是一个多模态、以自我为中心的 3D 感知数据集和整体 3D 场景理解的基准。 它包含超过 5k 个扫描,封装了 1M 个以自我为中心的 RGB-D 视图、1M 个语言提示、160k 个 3D 导向框,涵盖 760 多个类别,其中一些与 LVIS 部分一致,以及具有 80 个常见类别的密集语义占用率。 基于这个数据库,我们引入了一个名为 Embodied Perceptron 的基线框架。它能够处理任意数量的多模态输入,并表现出卓越的 3D 感知能力,无论是在我们建立的两个系列基准测试(即基本 3D 感知任务和基于语言的任务)中,还是在野外。
结果,他们必须能够获得高效、优质和有效的服务。不幸的是,由于皮肤科医生短缺问题日益严重,北美大多数患者的情况并非如此,平均等待专业医生的时间超过两个月。因此,越来越多的医疗专业人员提供皮肤科服务,以满足这种快速增长的需求。识别皮肤病变的性质在很大程度上依赖于护理提供者的专业知识。然而,由于皮肤图像分析和分类的复杂性,这个过程通常对即使是最有经验的专家来说也很有挑战性,因此会产生大量不必要的活检标本。患者接受侵入性手术的经济负担和身体创伤,再加上皮肤癌病例的低假阳性率,使得有必要采用新一代工具来支持准确的、基于证据的临床决策。人工智能如何支持这一日益增长的需求?利用技术的力量代表着对色素性皮肤病变的分析和诊断有了巨大的进步。人工智能 (AI) 技术有能力彻底改变医疗专业人员为患者提供最佳医疗结果的方式。机器学习能力成为战略技术盟友,可根据对数百万先前分类的病例的累积分析提供高度准确的决策支持。旨在与该领域的主要利益相关者密切合作的全球举措更好地展示了 AI 在皮肤病学中的实施潜力。可以通过该领域不同研究领导者的累积参与来研究和促进 AI 算法的力量和特异性,就像 ISIC 图像分类挑战赛所鼓励的那样。