fi g u r e 3九部分的缝合线和fontanelles,包括旋风缝合线,前fontanelle,冠状缝合线,冠状缝合力,鳞状缝合,矢状缝线,lambdoidal缝合力,后缝线,后fontanelle,sphenoidal fontanelle和mastainelle and masteroid fontanelle doction inthere forthanelle ways in 3222 22222222222222222222222222222222222222222222222222222222222222 rection。Metopic缝合线始于nasion,这也是边界1和边界的起点2。矢状缝合线从顶骨的角点开始,这也是边界3和边界的起点和终点4。基于其边界上半标记的宽度差异,确定了Metopic缝合线和矢状缝合线的终点。还通过宽度方差识别位于侧面(蓝色)的其余24个缔约点,该方差确定了其余缝合线的端点。该数字使用了69名受试者的平均PC分数产生的缝合线和Fontanelle的平均形态。
发行:文部科学省记者俱乐部、科学记者俱乐部、神奈川县政府记者俱乐部、横须贺市政府记者俱乐部、青森县政府记者俱乐部、陆奥市政府记者俱乐部、高知县政府记者俱乐部、冲绳县政府记者俱乐部、名护市3家公司、鹿儿岛县16家新闻机构
1 N. H. D. Khang,T。Shirokura,T。Fan,M。Tahahashi,N。Nakatani,D。Kato,Y。Miyamoto,2 H. Wu,D。Turan,Q。Pan,C.-Y. Yang,G。Wu。 下巴,H.-J。 Lin,C.-H。莱,张,M。Jarrahi, 3 K. Gary,C。 4 Y. J. A. b。 Huai,18(6),33(2008)。 5 W.-G。 Wang,M。Li,St.Eageman和C. L. 6 T. Kawahara,K。Ito,R。Take, 7 A. 7 A. 8 A. J. Sinova,St.O。O. Valenzuela,J。Wunderlich,C。H。Back,1213(2015)。 10 10 J. E. E. 11 K. Gary,I。M。Miron,C。 12 C. O. Avci。 A. Katine,应用1092 H. Wu,D。Turan,Q。Pan,C.-Y.Yang,G。Wu。 下巴,H.-J。 Lin,C.-H。莱,张,M。Jarrahi, 3 K. Gary,C。 4 Y. J. A. b。 Huai,18(6),33(2008)。 5 W.-G。 Wang,M。Li,St.Eageman和C. L. 6 T. Kawahara,K。Ito,R。Take, 7 A. 7 A. 8 A. J. Sinova,St.O。O. Valenzuela,J。Wunderlich,C。H。Back,1213(2015)。 10 10 J. E. E. 11 K. Gary,I。M。Miron,C。 12 C. O. Avci。 A. Katine,应用109Yang,G。Wu。下巴,H.-J。 Lin,C.-H。莱,张,M。Jarrahi, 3 K. Gary,C。 4 Y. J. A. b。 Huai,18(6),33(2008)。 5 W.-G。 Wang,M。Li,St.Eageman和C. L. 6 T. Kawahara,K。Ito,R。Take, 7 A. 7 A. 8 A. J. Sinova,St.O。O. Valenzuela,J。Wunderlich,C。H。Back,1213(2015)。 10 10 J. E. E. 11 K. Gary,I。M。Miron,C。 12 C. O. Avci。 A. Katine,应用109下巴,H.-J。Lin,C.-H。莱,张,M。Jarrahi, 3 K. Gary,C。 4 Y. J. A. b。 Huai,18(6),33(2008)。 5 W.-G。 Wang,M。Li,St.Eageman和C. L. 6 T. Kawahara,K。Ito,R。Take, 7 A. 7 A. 8 A. J. Sinova,St.O。O. Valenzuela,J。Wunderlich,C。H。Back,1213(2015)。 10 10 J. E. E. 11 K. Gary,I。M。Miron,C。 12 C. O. Avci。 A. Katine,应用109Lin,C.-H。莱,张,M。Jarrahi,3 K. Gary,C。 4 Y. J. A. b。 Huai,18(6),33(2008)。 5 W.-G。 Wang,M。Li,St.Eageman和C. L. 6 T. Kawahara,K。Ito,R。Take, 7 A. 7 A. 8 A. J. Sinova,St.O。O. Valenzuela,J。Wunderlich,C。H。Back,1213(2015)。 10 10 J. E. E. 11 K. Gary,I。M。Miron,C。 12 C. O. Avci。 A. Katine,应用1093 K. Gary,C。4 Y. J.A. b。 Huai,18(6),33(2008)。5 W.-G。 Wang,M。Li,St.Eageman和C. L. 6 T. Kawahara,K。Ito,R。Take, 7 A. 7 A. 8 A. J. Sinova,St.O。O. Valenzuela,J。Wunderlich,C。H。Back,1213(2015)。 10 10 J. E. E. 11 K. Gary,I。M。Miron,C。 12 C. O. Avci。 A. Katine,应用1095 W.-G。 Wang,M。Li,St.Eageman和C. L.6 T. Kawahara,K。Ito,R。Take, 7 A. 7 A. 8 A. J. Sinova,St.O。O. Valenzuela,J。Wunderlich,C。H。Back,1213(2015)。 10 10 J. E. E. 11 K. Gary,I。M。Miron,C。 12 C. O. Avci。 A. Katine,应用1096 T. Kawahara,K。Ito,R。Take,7 A. 7 A.8 A.J. Sinova,St.O。O. Valenzuela,J。Wunderlich,C。H。Back,1213(2015)。10 10 J. E. E.11 K. Gary,I。M。Miron,C。 12 C. O. Avci。 A. Katine,应用10911 K. Gary,I。M。Miron,C。12 C. O. Avci。A. Katine,应用109A. Katine,应用10913 N. H. D. Khang和P. N. Hai,应用物理信函117(25),252402(2020)。14 Y. Takahashi,Y。Takeuchi,C。Zhang,B。Jinnai,S。Fukami和H. Ohno,应用物理信函114(1),012410(2019)。15G.Mihajlović,O。Mosendz,L。Wan,N。Smith,Y。Choi,Y。Wang和J.16 S. Fukami,T。Anekawa,C。Zhang和H. Ohno,自然纳米技术11(7),621(2016)。17 Y.-T。 Liu,C.-C。黄,K.-H。 Chen,Y.-H。黄,C.-C。 Tsai,T.-Y. Chang和C.-F。 PAI,物理审查应用了16(2),024021(2021)。17 Y.-T。 Liu,C.-C。黄,K.-H。 Chen,Y.-H。黄,C.-C。 Tsai,T.-Y.Chang和C.-F。 PAI,物理审查应用了16(2),024021(2021)。Chang和C.-F。 PAI,物理审查应用了16(2),024021(2021)。
摘要:定向能量沉积 (DED) 是增材制造 (AM) 的一个重要分支,可用于修复、熔覆和加工多材料部件。316L 奥氏体不锈钢广泛用于食品、航空航天、汽车、船舶、能源、生物医学和核反应堆行业等领域。尽管如此,仍需要优化工艺参数,并全面了解工艺参数对沉积材料或部件的几何形状、微观结构和性能的单独和复杂协同作用。这对于确保在单个或一系列平台上随时间重复制造零件,或最大限度地减少孔隙率等缺陷至关重要。在本研究中,采用响应曲面法 (RSM) 和中心复合设计 (CCD) 研究激光功率、激光扫描速度和粉末质量流量对激光工程净成形 (LENS ®) DED 加工的 316L 钢的层厚度、密度、微观结构和显微硬度的影响。开发了与应用的加工参数和研究的响应相关的多项式经验预测模型。
石墨烯中的表面等离子体极化子(SPP)是理论和实验研究的一个有趣领域,尤其是在石墨烯层中支持具有横向电动(TE)极化的SPP的可能性[1]。最近,使用复杂的频率方法在非零温度下[2]的扩展频率范围显示,显示了TE SPP在非零的频率范围中存在,该方法使用复杂的频率方法模拟具有时间衰减的开放系统。由于石墨烯的电导率很小,与细胞结构常数成正比[1],TE SPP频率色散非常接近光线,但由于其分散曲线位于光线下方,因此无法通过外部入射的光激发TE SPP。石墨烯以其光导率的可调节性而闻名,它通过应用合适的栅极电压来诱导易于易于的化学电位[3]。这是因为电子过渡出现在k点附近[4],其中电子色散是线性的,状态的密度消失。诸如光学调节剂[5]和极化器[6]等设备以及吸收增强设备[7,8],从这种可调性中受益,该可调性与石墨烯中TE SPP的存在一起,为等离子应用提供了令人兴奋的前景[9]。此外,使用定期石墨烯的结构打开了应用磁场时产生拓扑等离子状态的可能性[10-13]。已经研究了石墨烯[14 - 17]的周期性等离子结构,甚至是周期性石墨烯条的多层堆栈[18-22]。堆叠石墨烯二级层对横向磁性(TM)SPPS性质的影响也具有
图 2. 平面和三平面网络的概念。(a)轴向平面网络,其中在轴向图像上训练的 CA、CCSA 和 SCSA 网络的分割结果被组合以生成结果。同样,我们可以创建一个冠状集合和一个矢状集合。(b)三平面网络的概述,其中在轴向、冠状和矢状图像上训练的单个注意网络(例如 CA 网络)生成的分割结果被组合以生成结果。在三个正交平面上训练的 CCSA 和 SCSA 注意网络会生成类似的分割结果。
联系地址:〒158-0098 东京都世田谷区上与贺1-20-1 日本陆上自卫队关东补给站与贺支部总务部会计科合同组负责人:中谷野电话:03-3429-5241(分机)372 传真:03-3429-5245
图2。平面和Triplanar网络的想法。(a)将轴向平面网络从轴向图像进行训练的CA,CCSA和SCSA网络的分割结果组合在一起以产生结果。同样,我们可以创建冠状合奏和矢状 - 合奏。(b)Triplanar网络的概述,在该网络中,从轴向,冠状图像和矢状图像中训练的单个注意网络(例如,CA网络)产生的分段结果合并为生成结果。通过在三个正交平面训练的CCSA和SCSA注意网络中生成类似的分段结果。