在可持续能源生产和发展的框架中,电能存储 (EES) 是实现这一目标的关键因素。处于能源存储最前沿的是基于电化学存储的系统,例如电池和电化学电容器。多年来,电池和电双层电容器 (EDLC) 的完美组合已经出现,作为抵消这两种技术特定问题的一种方式,并代表了未来 EES 设备达到高能量和功率密度的新方向。作为一种战略性无材料低成本技术,非水混合超级电容器 (KIC) 代表了高功率应用的有前途的解决方案。这里介绍的 KIC 技术由活性炭正极和超大石墨负极组成,浸入乙腈基非水电解质和钾盐中 [1]。该技术发展的主要障碍是结果的不可重复性。对于锂离子电池,化成工艺是关键的制造步骤,可在负极表面形成稳定致密的固体电解质界面 (SEI),确保均匀稳定的性能。此步骤也被认为对 KIC 系统至关重要。得益于适当的化成工艺 [2] 的开发,可以形成均匀连续且 KF 含量低的 SEI,并且软包电池规模的性能现在稳定且可重复。此外,观察到了 SEI 中 KF 含量的变化与循环性能的变化之间的相关性。本文将介绍和讨论这一结果。
抽象的月亮 - 阿波罗计划期间通过轨道和表面实验观察到血浆相互作用。光子和带电的颗粒为月球表面充电,并形成薄的debye-比例等离子鞘,在日光下和阴影半球上方。此外,电子的平均热速度,导致Debye鞘在航天器周围形成。光电子和等离子体鞘直接在表面上吸收的灰尘谷物,这些粉尘呈凸起,随后充电的尘埃流动呈负电荷,并与降落的航天器的正面表面接触。作为电荷载体,灰尘颗粒被吸引或排斥在带电的航天器上。环境等离子体和高次级排放的低密度也有助于横杆上的表面充电速率高。电荷在航天器和航天器组件上的积累是由航天器与空间等离子体,能量粒子流和太阳光子相互作用而产生的,该太阳光子通常由游离电子和光子驱动。据报道,归因于航天器充电的各种效果是导致许多操作异常的原因,包括操作异常组件故障,伪造命令,物理航天器表面损伤以及航天器表面材料热和电特性的降解。等离子体的研究 - 表面相互作用显示出有希望的结果,用于开发新型的粉尘缓解航天器充电安全管理的策略。关键字:等离子表面相互作用,等离子鞘,(航天器)表面充电本文旨在调查减轻月球尘埃作为等离子表面相互作用的载体的策略,从而导致航天器充电。
摘要 - 从演示中学习(LFD)已成为一种有希望的方法,使机器人可以直接从人类示范中获取复杂的任务。但是,涉及自由形式3D表面上表面相互作用的任务在建模和执行中带来了独特的挑战,尤其是在演示和机器人执行之间存在几何变化时。本文提出了一个称为概率表面相互作用原始原始原始词(Prosip)的新型框架,该框架从系统地结合了表面路径和局部表面效果。仪器工具允许无缝记录和执行人类示范。通过设计,prosips独立于时间,不变到刚体的位移,并使用带有笛卡尔控制器的任何机器人平台。该框架用于浴室水槽的边缘清洁任务。证明了对各种对象几何形状和显着扭曲对象的概括能力。模拟和具有9度自由机器人平台的实验设置证实了绩效。
摘要:上市公司会计监督委员会(“PCAOB”或“委员会”)正在通过对 AS 1105《审计证据》和 AS 2301《审计师对重大错报风险的应对》的修订,并通过对另一项审计准则的相应修订。这些修订旨在通过解决涉及技术辅助分析电子形式信息等审计程序的设计和执行方面的问题,提高审计质量并加强投资者保护。委员会联系人:Barbara Vanich,总审计师,总审计师办公室(202/207-9363,vanichb@pcaobus.org);Dima Andriyenko,副总审计师,总审计师办公室(202/207-9130,andriyenkod@pcaobus.org); Dominika Taraszkiewicz,高级副总审计师,总审计办公室(202/591-4143,taraszkiewiczd@pcaobus.org);Donna Silknitter,副总审计师,总审计办公室(202/251-2485,silknitterd@pcaobus.org);Hunter Jones,总法律顾问,总审计办公室(202/591-4412,jonesh@pcaobus.org)。工作人员贡献者:Robert Kol,助理总审计师,总审计办公室;Martin Schmalz,首席经济学家兼经济与风险分析办公室主任;Erik Durbin,副首席经济学家,经济与风险分析办公室;Michael Gurbutt,经济与风险分析办公室副主任;Carrie Von Bose,高级金融经济学家,经济与风险分析办公室;
●遥感和建模目标:通过验证和改进北极中的遥感算法和模型参数化,增强了北极海冰,云和气溶胶的长期空间监测和预测能力。
现场报告 生成人工智能时代的有意义的写作 Kristi Girdharry 和 Davit Khachatryan 巴布森学院 DOI:10.37514/DBH-J.2023.11.1.04 简介 2023 年 1 月底,本文的合著者参加了学校的一场推广教师研究的活动。应用统计学教授 Davit Khachatryan 正在介绍 Playmeans——他为音乐数据的视听分析创建的应用程序 1——而英语教授 Kristi Girdharry 正在介绍一项关于学生作家的初步研究。从表面上看,这两个演讲和演讲者在学科知识和主题方法方面相差甚远;然而,他们对学生和教师如何使用各种技术来参与有意义的学习体验有着共同的兴趣。
1卡诺州立尼日利亚热带健康科学与技术学院分配学位。2验光系,盟军健康科学学院,卡诺尼日利亚贝罗大学。3尼日利亚苏美拉市Al-Istiqamah大学医学实验室科学系。4农业,科学技术学院动物健康系,尼日利亚塔拉巴州贾林戈。5 Aminu Dabo卫生科学学院牙科健康科学系,卡诺州立尼日利亚。 6 Aminu Dabo卫生科学与技术学院的分发视角系,卡诺州立尼日利亚。 7天然与药学学院微生物学系,贝耶罗大学卡诺·尼日利亚大学。 8吉伐瓦尼日利亚联邦大学杜德大学微生物与生物技术系。5 Aminu Dabo卫生科学学院牙科健康科学系,卡诺州立尼日利亚。6 Aminu Dabo卫生科学与技术学院的分发视角系,卡诺州立尼日利亚。7天然与药学学院微生物学系,贝耶罗大学卡诺·尼日利亚大学。 8吉伐瓦尼日利亚联邦大学杜德大学微生物与生物技术系。7天然与药学学院微生物学系,贝耶罗大学卡诺·尼日利亚大学。8吉伐瓦尼日利亚联邦大学杜德大学微生物与生物技术系。
我们研究粒子的封闭系统,这些粒子除了受到保守力的作用外,还受到随机力的作用。随机运动方程的建立方式使得能量始终严格守恒。为了确保这一守恒定律,概率密度的演化方程是使用随机运动方程的适当解释(不是伊藤解释或斯特拉托诺维奇解释)推导出来的。相空间中的轨迹被限制在恒定能量的表面。尽管存在这种限制,但熵仍随时间增加,表现出不可逆行为并松弛至平衡。本方法的主要结果与刘维尔方程给出的结果形成对比,后者也描述了封闭系统,但没有表现出不可逆性。
摘要:石墨烯 - 有机混合电子产品的开发是下一代电子材料的最有希望的方向之一。然而,了解界面处的石墨烯 - 有机半导体相互作用仍然很具有挑战性,这是设计混合电子产品的关键。在此,我们研究了石墨烯对共轭聚合物的溶液加工单层(PII-2T,DPP-BTZ,DPP2T-TT和DPP-T-T-T-TM)的多形形态的影响。与等离子SIO 2底物相比,石墨烯和PII-2T之间的强相互作用在石墨烯上的单层纤维的高密度和高纤维覆盖率中表现出来。石墨烯上的单层纤维也表现出较高的相对程度的结晶度和二分性比率或聚合物比对,即较高的阶数。拉曼光谱显示,在石墨烯沉积以及整个界面上的电子相互作用上存在时,共轭聚合物的主链平面增加。PII-2T的光电子光谱(XPS和UPS)的结果进一步证实了这一猜测,这表明几个原子能水平的结合能量降低,费米水平向同性恋的运动以及工作功能的增加,所有这些都表明了聚合物的P-popoping。我们的结果提供了对石墨烯 - 聚合物相互作用的新水平,在纳米界面上以及随之而来的对多尺度形态的影响,这将有助于设计有效的石墨烯 - 有机混合电子学。■简介