犹他阵列为 BrainGate 等尖端神经功能恢复项目提供动力,但底层电极技术本身在过去三十年中几乎没有取得任何进展。在这里,利用先进的双面光刻微加工工艺来展示 1024 通道穿透硅微针阵列 (SiMNA),其记录能力和皮质覆盖范围可扩展,适合临床转化。SiMNA 是第一个具有柔性背衬的穿透微针阵列,可适应大脑运动。此外,SiMNA 具有光学透明性,允许同时进行光学和电生理学神经元活动检查。SiMNA 用于展示对长期植入小鼠的自发和诱发场电位以及单个单位活动的可靠记录,这些记录在长达 196 天内响应光遗传学和胡须气流刺激。值得注意的是,1024 通道 SiMNA 建立了大鼠宽带大脑活动的详细时空映射。这种新型可扩展且生物相容的 SiMNA 具有多模态能力和对宽带大脑活动的敏感性,将加速基础神经生理学研究的进展,并为用于脑机接口的穿透和大面积覆盖微电极阵列树立新的里程碑。
摘要 随着纳米技术领域的进步,纳米图案化不仅在高附加值产品中得到广泛应用,而且在廉价产品中也得到广泛应用。此外,大规模生产廉价产品所需的技术,如连续卷对卷 (R2R) 工艺,正在迅速兴起。人们对亚微米和纳米模具的制造进行了广泛的研究。在这项研究中,我们提出了一种激光干涉曝光来制造可用于连续卷对卷图案化的纳米图案圆柱形模具。此外,我们还展示了使用棱镜在圆柱体(长度为 300 毫米,直径为 100 毫米)上制造无缝图案的螺旋曝光工艺。使用 UV 树脂将图案转移到平面模具上,并使用场发射扫描电子显微镜进行测量;测量结果显示图案均匀,具有纳米图案线宽(75 纳米)和亚微米周期(286 纳米)。观察结果表明,使用激光干涉光刻制造卷模的方法是一种快速可靠的无缝图案化方法。
Liming Qin 1 , Guiyan Yang 1 , Dan Li 1 , Kangtai Ou 1 , Hengyu Zheng 1 , Qiang Fu 2 , Youyi Sun 1*
发行:文部科学省记者俱乐部、科学记者俱乐部、神奈川县政府记者俱乐部、横须贺市政府记者俱乐部、青森县政府记者俱乐部、陆奥市政府记者俱乐部、高知县政府记者俱乐部、冲绳县政府记者俱乐部、名护市3家公司、鹿儿岛县16家新闻机构
CMOS全加器。建议的全加器总共使用八个晶体管,功耗为4.604 μW,总面积为144 μm 2 。1-trit三元全加器(TFA)由Aloke等人[2]提出,作为波流水线三元数字系统构建的一个组件。在本文中,针对建议的三元全加器电路“SUM”实现了K-map。完整的TFA是在Tanner EDA V.16增强型标准工艺中设计和优化的,该工艺基于TSMC 65nm CMOS技术的BSIM4模型,温度为27°C,施加电压线为1.0Volt。0 Volt、0.5Volt和1.0Volt的值用于表示三元值“00”、“01”和“02”。 Sharmila Devi 和 Bhanumathi [3] 描述了如何使用单向逻辑门线来创建典型的 MCML 全加器,以接收 6 个输入信号来执行可逆门。使用 Tanner EDA 软件来设计和模拟此布置。在分析模拟数据后,建议的结果是 24,与 TSG 导向全加器、费米门导向全加器和费曼门导向全加器相比,系统地减少了 60%、66.66% 和 63.63%。
在过去的几十年中,常规磁共振成像仍然是最常用的标准治疗成像方法 [5]。其能力非常有限,经常导致在区分两种不同类型的脑肿瘤发展时产生混淆。特别是在单发病灶的情况下,原发性恶性脑肿瘤和脑转移瘤在磁共振成像中的模式几乎相同,尽管治疗和管理完全不同。原发性恶性脑肿瘤患者将立即接受手术切除,而脑转移瘤患者必须首先经过更复杂的识别过程来确定癌症的起源位置,然后才能决定后续的治疗方法。冗长而不准确的诊断将进一步加重患者的病情 [6]。可用于观察上述比较的常规磁共振成像的两个序列是用于可视化肿瘤周围水肿的液体衰减反转恢复 (FLAIR) 序列和 T1W1
高能量密度固态电池需要高面积容量的阴极。在这里,我们展示了一种用于循环 3-6 mAh/cm 2 NMC811 复合阴极的双层聚合物电解质设计。双层电解质包括交联 PEO 基电解质层和线性 PEO 基电解质层。前者提供抗枝晶性,后者在循环过程中提供与阴极的无缝界面。使用单层膜会导致第一次循环中严重短路或极低的库仑效率 (CE)。面向锂阳极的刚性抑制枝晶的电解质和确保在循环过程中与阴极接触的更柔软的阴极集成电解质的一般概念可能为实现高能量密度阴极提供一种模式。
a)茂密的针叶森林(使用的虚拟森林景观场景:A中: e)热带森林(使用的虚拟森林景观场景:C中的C)f)f)稀疏森林(使用的虚拟森林景观场景:图2中的e)g)g)g)g)paddy领域的lut(使用的虚拟森林景观场景:图2中的f)
LACera™ 代表着 CMOS 技术新时代的开始,由 Teledyne Imaging 独家开发和拥有。LACera 以 Teledyne 的 CCD 和 CMOS 传感器以及相机技术和设计为基础,在 CMOS 高级成像功能方面迈出了重要的一步,为下一代发现提供了可能。CMOS 传感器的挑战在于在扩展到更大尺寸时保持性能;特别是提供速度和低噪音架构的组合。LACera 凭借全局快门、18 位读出和辉光抑制技术,在数百万像素的规模上提供深度冷却、低噪音性能。LACera 代表了高级成像解决方案的关键要素,只有凭借 Teledyne 的性质和规模才有可能实现。从像素、传感器和 ROIC 设计,到低噪音电子器件,再到深度冷却和系统接口,Teledyne 是唯一一家能够在大尺寸 CMOS 中提供这种百分之百有机解决方案的公司。请留意 LACera 独家功能上显示的 LACera 徽标。
图 1:南极冰山跟踪数据库记录的 B30 冰山轨迹(Budge 和 Long,2018 年):2012 年从思韦茨冰架崩解后,它跟随沿海洋流向西移动,2017 年开始向北漂移,最终于 2019 年解体。黑点标记了 CryoSat-2 飞越冰山的可用位置,圆圈表示本研究中使用的 MODIS 和 Sentinel 1 图像的位置 120