我们研究了 Lindblad 主方程形式中具有相位耗散的量子 Ising 链中的纠缠动力学。我们考虑了两种保留状态高斯形式的解构,使我们能够处理大型系统。第一个解构产生了量子态扩散动力学,而第二个解构描述了一种特定形式的量子跳跃演化,适合构建以保留高斯性。在第一种情况下,我们发现了从面积律到对数律纠缠缩放的交叉,并绘制了相关的相图。在第二种情况下,我们只发现了对数律缩放,并指出了同一 Lindblad 方程的不同解构的不同纠缠行为。最后,我们将这些结果与非厄米汉密尔顿演化的预测进行比较,发现了相互矛盾的结果。
1.1.1 描述以下标准并说明影响每个标准的因素:a. 马赫数 b.区分亚音速、跨音速和超音速飞行的近似马赫数 c. 临界马赫数 d. 马赫锥 e. 亚音速飞行 f. 超音速飞行 g. 跨音速飞行 h. 超音速气流特性 i.大气特性对声速的影响 j. 气动/动能加热 k. 面积律 l. 压缩性和压缩性冲击 m. 不可压缩性 n. 膨胀波 o.冲击引起的阻力 p. 冲击引起的失速 q.尾流湍流 r. 与边界层相关的气流 s. 压力扰动传播及其对超音速气流的影响 t. 压力扰动的近似速度 u.边界层及其对飞机空气动力学性能的影响 v. 翼型最大弯度点与弦长百分比的关系 w. 超音速气流通过发散管道
与环境耦合的一般多体系统由于退相干而失去量子纠缠,并演变为仅具有经典相关性的混合状态。在这里,我们表明测量可以稳定开放量子系统内的量子纠缠。具体而言,在边界处失相的随机单元电路中,我们从数值和分析上发现,以较小的非零速率进行的投影测量会导致系统内出现 L 1 / 3 幂律缩放纠缠负性的稳定状态。使用对随机环境中定向聚合物统计力学模型的解析映射,我们表明幂律负性缩放可以理解为由于随机测量位置而导致的 Kardar-Parisi-Zhang (KPZ) 波动。进一步增加测量速率会导致相变到面积律负性相,这与无退相干的受监控随机电路中的纠缠转变具有相同的普遍性。
能量幺正动力学驱使量子多体系统进入高度纠缠态,其特征是子系统纠缠熵的体积定律缩放。当这种动力学被快速局部测量所拦截时,各个量子轨迹预计会坍缩为低纠缠态,其特征是子系统纠缠熵的面积定律缩放。最近发现,至少在一类模型中,这两个阶段由一个有限测量速率 1 – 3 的尺度不变的“临界点”分隔。近期,人们对这种转变及其概括的几个方面进行了研究 4 – 19 。在无限快速局部测量的极限下,系统的状态关键取决于测量基的选择。假设只测量交换的单量子比特算子,波函数就会坍缩为无纠缠的平凡积态。然而,如果选择测量一组稳定拓扑或对称保护拓扑 (SPT) 波函数的稳定算子,那么得到的状态——尽管也具有纠缠面积律标度——在拓扑上将不同于乘积状态 20 , 21 。在本文中,我们考虑这两类测量之间的竞争,以及它们与幺正动力学的竞争。这就引发了一个问题,即拓扑相的概念是否在包含幺正动力学和局部测量的随机量子电路中得到很好的定义。为了回答这个问题,我们考虑一个 (1 + 1)D 量子电路模型,它包含三个元素:(1) 稳定 Z 2 ´ Z 2 的稳定算子的测量