1 因斯布鲁克大学药学/生药学研究所、因斯布鲁克分子生物科学中心 (CMBI),Innrain 80 / 82, 6020 因斯布鲁克,奥地利; F.Mayr@uibk.ac.at (FM); Veronika.Temml@pmu.ac.at (佛蒙特州); birgit.waltenberger@uibk.ac.at (BW); Stefan.Schwaiger@uibk.ac.at (SS); hermann.stuppner@uibk.ac.at (HS) 2 研究单位分子内分泌学和代谢,亥姆霍兹中心慕尼黑,Ingolstädter Landstraße 1, 85764 Neuherberg,德国; gabriele.moeller@helmholtz-muenchen.de(总经理); adamski@helmholtz-muenchen.de (JA) 3 格赖夫斯瓦尔德大学药学院制药/药物化学系,Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald,德国;ulrike.garscha@uni-greifswald.de (UG);jana.fischer@uni-greifswald.de (JF) 4 伯尔尼大学儿童医院儿科内分泌、糖尿病和代谢科,Freiburgstrasse 15, 3010 Bern,瑞士;patrirodcas@gmail.com (PRC); amit.pandey@dbmr.unibe.ch (AVP) 5 伯尔尼大学生物医学研究系,Freiburgstrasse 15, 3010 伯尔尼,瑞士 6 巴塞尔大学药学系分子与系统毒理学分部,Klingelbergstrasse 50, 4056 巴塞尔,瑞士;silvia.inderbinen@unibas.ch (SGI);alex.odermatt@unibas.ch (AO) 7 萨尔州亥姆霍兹药物研究所 (HIPS),药物设计和优化系,E8.1 校区,66123 萨尔布吕肯,德国; rolf.hartmann@helmholtz-hzi.de 8 萨尔大学,制药和药物化学,E8.1 校区,66123 萨尔布吕肯,德国 9 海德堡大学,药学和分子生物技术研究所 (IPMB),药物化学,Im Neuenheimer Feld 364,69120 海德堡,德国;christian.gege@web.de 10 埃德蒙马赫基金会 (FEM) 研究与创新中心,Via Mach 1,38010 San Michele all'Adige,意大利;stefan.martens@fmach.it 11 耶拿弗里德里希席勒大学药学研究所制药/药物化学系,Philosophenweg 14,07743 耶拿,德国; oliver.werz@uni-jena.de 12 遗传学实验学校,慕尼黑工业大学,Emil-Erlenmeyer-Forum 5, 85356 Freising-Weihenstephan, 德国 13 新加坡国立大学杨潞龄医学院生物化学系,8 Medical Drive, Singapore 117597,新加坡 14 药学研究所,萨尔茨堡帕拉塞尔苏斯医科大学制药和药物化学系,Strubergasse 21, 5020 Salzburg, Austria 15 药学/药物化学研究所,因斯布鲁克分子生物科学中心 (CMBI),因斯布鲁克大学,Innrain 80 / 82, 6020 Innsbruck, Austria * 通讯作者:daniela.schuster@pmu.ac.at;电话:+43-699-14420025
摘要:精确的纳米结构几何形状使纳米传感器能够将光学生物分子传递到活细胞内环境,这对于精确的生物和临床治疗非常有吸引力。然而,由于缺乏设计指南来避免光学力和金属纳米传感器在传递过程中产生的光热之间的固有冲突,利用纳米传感器通过膜屏障进行光学传递仍然很困难。在这里,我们进行了一项数值研究,报告了通过设计纳米结构几何形状来显著增强纳米传感器的光学穿透性,以最小化光热产生以穿透膜屏障。我们表明,通过改变纳米传感器的几何形状,可以最大化穿透深度,同时可以最小化穿透过程中产生的热量。我们通过理论分析证明了角旋转纳米传感器对膜屏障产生的横向应力的影响。此外,我们表明,通过改变纳米传感器的几何形状,最大化纳米颗粒-膜界面处的局部应力场使光学穿透过程增强了四倍。由于其高效率和稳定性,我们预计纳米传感器到特定细胞内位置的精确光学穿透将有利于生物和治疗应用。
在药物发现中,识别靶蛋白和分子之间的结合至关重要。当每个任务的信息量较小时,多任务学习方法已被引入以促进任务之间的知识共享。然而,多任务学习有时会降低整体性能或在各个任务的性能之间产生权衡。在本研究中,我们提出了一种通用的多任务学习方案,通过组选择和知识提炼,不仅可以提高平均性能,还可以最大限度地减少个体性能的下降。根据配体靶标组之间的化学相似性来选择组,并将同一组中的相似靶标一起训练。在训练过程中,我们应用教师退火的知识提炼。多任务学习模型由单任务学习模型的预测引导。这种方法的平均性能高于单任务学习和经典多任务学习。进一步的分析表明,多任务学习对于低性能任务特别有效,知识提炼有助于模型避免多任务学习中单个任务性能的下降。
摘要:多发性骨髓瘤(MM)是第二常见的血液系统恶性肿瘤。由于引入了新的疗法,尽管进展取得了巨大的治疗进展,但MM仍然是一种无法治愈的疾病。广泛的研究目前正在寻找新的选择。microRNA(miRNA)是小的非编码RNA分子,在转录后水平调节基因表达。mm中miRNA的异常表达是常见的。根据其在MM发育中的作用,miRNA被报道为肿瘤基因和肿瘤抑制剂。证明,使用miRNA模拟物或Antagomirs进行特定的miRNA改变可以使微环境和MM细胞中的基因调节网络和信号通路正常化。这些特性使miRNA在抗肌瘤治疗中具有吸引力的靶标。但是,只有少数基于miRNA的药物已进入临床试验。在这篇综述中,我们讨论了miRNA在MM发病机理,其当前状态在临床前/临床试验中的作用以及miRNA理论上可以在MM治疗中实现治疗益处的机制。
1 i3S—波尔图大学健康研究与创新研究所,葡萄牙波尔图 4200-135; fdiniz@ipatimup.pt (金融分析师); pcoelho@i3s.up.pt (个人电脑); hduarte@ipatimup.pt (主任); bruno.sarmento@i3s.up.pt (BS) 2 IPATIMUP—波尔图大学分子病理学和免疫学研究所,4200-135 波尔图,葡萄牙 3 ICBAS—波尔图大学阿贝尔萨拉查生物医学科学研究所,4050-313 波尔图,葡萄牙 4 INEB—波尔图大学国家生物医学工程研究所,4200-135 波尔图,葡萄牙 5 PU—健康科学和技术高级研究与培训研究所,4585-116 甘德拉,葡萄牙 6 波尔图大学医学院病理学系,4200-319 波尔图,葡萄牙 * 通信地址:celsor@ipatimup.pt (CAR); joanag@ipatimup.pt (JG);电话:+351-220-408-800 (中非和吉布提)
绝大多数药物都可以渗透到组织和细胞中,无论其实际治疗需求如何。这会导致副作用,这限制了药物的使用并需要减少治疗剂量。此外,由于细胞的渗透不良,因此无法使用许多潜在的药物,因为它们的电荷或大尺寸限制了它们通过生物膜的穿透。由于这些原因,细胞亚药物的递送成为医疗和药物领域的迅速增长的研究领域。许多生物学活性剂可以转运到特定的细胞室中,以发挥其活性或获得更高的活性。There are drugs, like photosensitizers ( Rosenkranz et al., 2000 ), radionuclides emitting short-range particles ( Sobolev, 2018 ; Rosenkranz et al., 2020 ), anticancer, antimicrobial, and antiviral drugs ( Torchilin, 2014 ), that can exert their maximum effect within a certain compartment.尽管在亚细胞递送方法的发展中取得了长足的进步,但在候补名单上,许多类型的生物活性分子(可能在临床环境中可以利用)。通过制造大分子(如抗体(Slastnikova et al。,2018),适体(Marshall和Wagstaff)或自然调节蛋白等方法的方法吸引了特殊的兴趣。在Kumar及其同事的评论文章中详细讨论了此问题(Kumar等人)。上述所有代理都可以称为本地作用,因为它们的作用或相互作用仅限于特定的亚细胞隔室。他们可能还需要特殊的运送车辆,并且可以用于细胞特异性影响。该研究主题的主要目标是突出显示当前递送车辆将当地作用的药物进入特定细胞的目标隔室。在“药理学前沿”(2018-2019)发表的研究主题“针对抗癌代理的靶向亚细胞递送”(2018-2019)中讨论了该领域的一些成就。本研究主题中介绍了最新的想法和新思想的评论,以展示开发策略以有效地将药物运送到特定的亚细胞部位的策略。细胞内膜传输途径,促进活性分子进入亚细胞位置,对于亚细胞靶向设计至关重要。细胞内靶向分娩的另一项任务是治疗多种疾病,尤其是癌症,是高度特异性分子靶向的设计。DNA适体分子是该领域中快速生长的工具,可用于特定细胞表面靶向,随后的内在化和与细胞内靶标分子(Marshall和Wagstaff)的相互作用。目前,适体在可以广泛地
在全球范围内,肝细胞癌(HCC)是癌症和癌症相关死亡的主要原因。局部区域治疗对晚期HCC患者的治疗功效仍然很低,这会导致预后不佳。索拉尼用于治疗HCC的发展导致了针对该疾病的分子靶向疗法的新时代。然而,据报道,索拉非尼治疗组中的总体生存率几乎不高于对照组。因此,在这篇评论中,我们描述了开发更有效的靶向疗法以管理高级HCC的重要性。最近对几种癌症分子信号通路的最近研究为开发针对这些信号通路关键成员的分子疗法提供了一些见解。蛋白质涉及刺猬和缺口信号通路,类似polo样激酶1,精氨酸,组蛋白脱乙酰基酶和Glypican-3可能是治疗HCC的潜在靶标。由于抑制性反馈机制的发展和诱导化学耐药性,单一疗法的治疗功效有限。因此,重点是发展个性化和组合分子靶向疗法,这些疗法可以作为改善HCC管理的理想治疗策略。
1马里兰大学医学院基因组科学研究所;巴尔的摩,马里兰州21201,美国。2马里兰大学医学院微生物与免疫学系;巴尔的摩,马里兰州21201,美国。 3马里兰大学公园计算机科学系;美国学院公园,马里兰州20742,美国4瑞士热带公共卫生研究所; 4123 Allschwil,瑞士5疫苗开发与全球健康中心,马里兰大学医学院;巴尔的摩,马里兰州21201,美国。 6组de recherche Action ensanté;布基纳法索的瓦加杜古。 7疟疾研究与培训中心,科学大学,技术与技术,巴马科;巴马科,马里8 Sanaria Inc.;罗克维尔,马里兰州20850,美国。 9全球健康与热带医学(GHTM),Higiene E Medicina Tropical(IHMT),Lisboa Nova de Lisboa大学(NOVA); 1349-008利斯博亚,葡萄牙2马里兰大学医学院微生物与免疫学系;巴尔的摩,马里兰州21201,美国。3马里兰大学公园计算机科学系;美国学院公园,马里兰州20742,美国4瑞士热带公共卫生研究所; 4123 Allschwil,瑞士5疫苗开发与全球健康中心,马里兰大学医学院;巴尔的摩,马里兰州21201,美国。 6组de recherche Action ensanté;布基纳法索的瓦加杜古。 7疟疾研究与培训中心,科学大学,技术与技术,巴马科;巴马科,马里8 Sanaria Inc.;罗克维尔,马里兰州20850,美国。 9全球健康与热带医学(GHTM),Higiene E Medicina Tropical(IHMT),Lisboa Nova de Lisboa大学(NOVA); 1349-008利斯博亚,葡萄牙3马里兰大学公园计算机科学系;美国学院公园,马里兰州20742,美国4瑞士热带公共卫生研究所; 4123 Allschwil,瑞士5疫苗开发与全球健康中心,马里兰大学医学院;巴尔的摩,马里兰州21201,美国。6组de recherche Action ensanté;布基纳法索的瓦加杜古。7疟疾研究与培训中心,科学大学,技术与技术,巴马科;巴马科,马里8 Sanaria Inc.;罗克维尔,马里兰州20850,美国。9全球健康与热带医学(GHTM),Higiene E Medicina Tropical(IHMT),Lisboa Nova de Lisboa大学(NOVA); 1349-008利斯博亚,葡萄牙
利什曼尼亚人是利什曼尼亚属动力质体寄生虫引起的被忽视的热带疾病的集合。当前的化学疗法受到严重限制,对新的反策划人的需求是迫切的重要性。溴结构域是表观遗传学读取器领域,它显示出有希望的癌症治疗潜力,并且还可能提出一个有吸引力的治疗寄生虫疾病的靶标。在这里,我们调查了Leishmania donovani溴dam虫因子5(LD BDF5)作为抗精神病药发现的靶标。LD BDF5包含N末端串联重复中的一对溴结构域(BD5.1和BD5.2)。我们通过X-Ray晶体学确定了Donovani BDF5的L. donovani BDF5的重组溴化局。使用组蛋白肽微阵列和荧光极化测定法,我们确定了LD BDF5溴结构域与源自组蛋白H2B和H4的乙酰化肽的结合相互作用。In orthogonal biophysical assays including thermal shift assays, fluorescence polarisation and NMR, we showed that BDF5 bromodomains bind to human bromodomain inhibitors SGC-CBP30, bromosporine and I- BRD9, moreover, SGC-CBP30 exhibited activity against Leishmania promastigotes in cell viability assays.这些发现体现了潜在的BDF5作为利什曼尼亚的药物靶标,并为未来开发针对这种表观遗传读取器蛋白的优化抗精神病化合物提供了基础。
分子分类,这表明GEA不再被视为一个实体,而应被视为具有多个亚组的异质疾病。在这些分类中,癌症基因组图集(TCGA)7和亚洲癌症研究小组(ACRG)8是最重要的。每个分类都以自己的特殊性和结果区分了四个不同的胃癌(GC)亚型。尤其是TCGA包括Epstein- Barr病毒阳性(EBV; 9%),微卫星不稳定性(MSI; 21%),基因组稳定(GS; 20%)和染色体不稳定性(CIN; 50%),7,而ACRG(23%),Microsatellite(23%),Microsatellite稳定,MICRABLE稳定,MICRATITES MICATS STITE STITE,MS/TP53(MS/TP53),; p53突变(MSS/ TP53 +; 26%)和微卫星稳定,具有上皮 - 间质转变(MSS/ EMT; 15%)。8