冠状病毒疾病(Covid-19)是由SARS-COV-2引起的,是近年来全球公共卫生和经济的最大挑战。到目前为止,仅适用于Covid-19患者的治疗方案有限,这引发了前所未有的研究冠状病毒生物学的努力。SARS-COV-2的基因组编码16个非结构性,四个结构性和9个附件蛋白,它们介导病毒生命周期,包括病毒进入,RNA复制和转录,病毒体组装和释放。这些过程取决于病毒多肽和宿主蛋白之间的相互作用,这两者都可能是Covid-19的潜在治疗靶标。在这里,我们将讨论SARS-COV-2和关键宿主因素的必需蛋白质的潜在药物价值。我们总结了19例Covid-19例患者,包括临床或临床试验中批准的患者,总结了最新更新的治疗干预措施。
摘要CD44是一种复杂的跨膜糖蛋白,以多种分子形式存在,包括标准同工型CD44S和CD44变体同工型。CD44参与了多种生理过程,CD44的异常表达和失调有助于肿瘤的启动和进展。CD44代表癌症干细胞的常见生物标志物,并促进上皮 - 间质转变。CD44参与了调节癌症增殖,侵袭,转移和耐药性的各种重要信号通路的调节,并且还通过癌细胞中各种分子进行了调整。此外,CD44可以作为癌症人群中的不良预后标记。CD44在癌中的多效性作用潜在地提供了用于治疗干预的新分子靶标。临床前和临床试验,用于评估CD44表达的肿瘤中CD44单克隆抗体的药代动力学,功效和与药物有关的毒性。在这篇综述中,我们关注与CD44相关的当前数据,并概述CD44结构,CD44的调节,CD44在癌变和癌症进展中的功能特性以及潜在的CD44靶向治疗用于癌症管理。关键字:CD44,癌症,癌症干细胞,上皮 - 间质转变,肿瘤起始,癌症进展,耐药性,靶向治疗
识别可用于治疗的细胞靶标(广义上称为靶标识别)仍然是药物发现的基本目标。近年来,加速靶标识别的新型化学和生物技术的应用已成为药物发现计划中的常见现象,因为全面了解分子在细胞环境中的反应方式可以提高结合选择性、改善安全性和临床疗效。使用光亲和标记 (PAL) 的既定方法通常成本高昂且耗时,因为信噪比差,再加上探针优化繁琐。在处理低丰度膜蛋白或多蛋白靶标结合时,此类挑战会加剧,通常导致靶标识别不可行。在此,我们描述了一种用于光催化小分子靶标识别的通用平台,该平台取决于通过可见光介导的 Dexter 能量转移产生高能卡宾中间体。通过将反应弹头与药物分离,催化信号放大可导致每种药物发生多次标记事件,从而实现前所未有的靶标富集水平。通过开发可穿透细胞的光催化剂结合物,该方法能够定量识别多种药物的靶标和脱靶,包括(+)-JQ1、紫杉醇和达沙替尼。此外,该方法还能够识别两种 GPCR(ADORA2A 和 GPR40)的靶标,这是一类在小分子 PAL 活动中很少成功发现的药物靶标。正文:识别生物靶标并了解它们在分子水平上的相互作用(靶标 ID)对于成功设计新的候选药物及其进入临床至关重要 1,2 。然而,近年来,全面表征药物靶标所面临的内在挑战表现为成功率低和时间长,导致整个行业的开发流程出现瓶颈 3,4 。因此,开发阐明小分子靶点的新方法有可能显著提高治疗靶点选择的成功率,从而减少临床流失,最终降低患者发病率(方案 1a)1,5,6 。在过去的二十年里,质谱 7 、化学遗传学 8 和生物信息学 9 等领域的技术进步改变了药物靶点识别,从而提高了我们对生物途径和细胞信号传导的理解 2,10 。然而,虽然这些信息为复杂的药物发现过程提供了更有针对性的途径,但对没有明确作用机制的蛋白质的靶点识别技术的需求仍然存在 11 。为了满足这一需求,基于亲和力的方法 12 ,尤其是光亲和标记(PAL),现已成为药物研发中常用的工具(方案 1a)13 。PAL 的工作原理是将化学计量的光活化基团(例如二氮丙啶)和亲和手柄(例如生物素)掺入小分子结构 14 。经过紫外线活化和基于亲和力的富集后,可以使用免疫印迹和蛋白质组学分析来收集有关目标蛋白质身份的信息 15 。
疟疾是一种寄生疾病,代表了全球公共卫生问题。质子属的原生动物负责引起人类疟疾。 疟原虫具有复杂的生命周期,需要翻译后的修饰(PTMS)在时间和空间上控制细胞活性,并调节关键蛋白质的水平和细胞机制,以维持效率高的感染和免疫逃避。 sumoylation是由小型泛素样蛋白与蛋白质底物上赖氨酸残基的共价连接形成的PTM。 该PTM是可逆的,是由三种酶的顺序作用触发的:E1激活,E2-共轭和E3连接酶。 在另一端,酵母中的泛素样蛋白特异性蛋白酶和哺乳动物中的哨兵特异性蛋白酶负责处理SUMO肽和对sumoypy的部分偶联。 进一步的研究对于理解疟原虫中SUMO的分子机制和细胞功能是必要的。 抗药性疟疾寄生虫的出现促使通过新颖的作用机理发现了新靶标和抗疟药。 在这种情况下,由疟疾寄生虫中的Sumoylation调节的保守生物学过程,例如基因表达调节,氧化应激反应,泛素化和蛋白酶体途径,建议PF SUMO作为一种新的潜在药物靶标。负责引起人类疟疾。疟原虫具有复杂的生命周期,需要翻译后的修饰(PTMS)在时间和空间上控制细胞活性,并调节关键蛋白质的水平和细胞机制,以维持效率高的感染和免疫逃避。sumoylation是由小型泛素样蛋白与蛋白质底物上赖氨酸残基的共价连接形成的PTM。该PTM是可逆的,是由三种酶的顺序作用触发的:E1激活,E2-共轭和E3连接酶。在另一端,酵母中的泛素样蛋白特异性蛋白酶和哺乳动物中的哨兵特异性蛋白酶负责处理SUMO肽和对sumoypy的部分偶联。进一步的研究对于理解疟原虫中SUMO的分子机制和细胞功能是必要的。抗药性疟疾寄生虫的出现促使通过新颖的作用机理发现了新靶标和抗疟药。在这种情况下,由疟疾寄生虫中的Sumoylation调节的保守生物学过程,例如基因表达调节,氧化应激反应,泛素化和蛋白酶体途径,建议PF SUMO作为一种新的潜在药物靶标。这种微型审查的重点是当前对疟原虫协调的多步生命周期作用机理的理解,并将它们作为寄生虫特异性抑制剂的发展和对疟疾疾病的治疗干预的有吸引力的新靶蛋白进行了讨论。
简单摘要:在肺癌中使用新型治疗药物已改变了肺癌诊断和治疗的范式。由于发展了一半的非小细胞肺癌(NSCLC)患者,因此可以通过遗传畸变来鉴定出一半的非小细胞肺癌(NSCLC)患者的一半非小细胞肺癌(NSCLC)患者的发展。已经很好地探索了EGFR,ALK和ROS-1激活突变的存在。可以成功针对的新目标包括NTRK,MET,RET和她的2个基因。一些颗粒已经获得了FDA批准,而在临床试验的后期阶段中有更多粒子。考虑到胸部肿瘤学的快速变化,需要进行最新的摘要。在这篇综述中,我们介绍了批准的治疗药物的当前景观以及重要的持续临床试验。
大多数临床诊断的皮肤 T 细胞淋巴瘤 (CTCL) 高度表达细胞表面标志物 CC 趋化因子受体 4 (CCR4) 和/或 CD25。最近,我们开发了基于白喉毒素的重组 Ontak 样人 IL2 融合毒素 (IL2 融合毒素) 和抗人 CCR4 免疫毒素 (CCR4 IT)。在本研究中,我们首先比较了 CCR4 IT 与 IL2 融合毒素针对人 CD25 + CCR4 + CTCL 的功效。我们证明 CCR4 IT 比 IL2 融合毒素更有效。我们进一步构建了 IL2-CCR4 双特异性 IT。双特异性 IT 比单独的 IL2 融合毒素或 CCR4 IT 更有效。双特异性IT是一种有前途的新型靶向治疗药物候选物,用于治疗难治性和复发性人类CD25+和/或CCR4+CTCL。
“最热门的蛋白质之一是MLC1,这就是我们专注于它的原因,” Fau Erlangen-Nuremberg的联合首先作者Raffael Dahl说。联合首先作者Alicia Weier是波恩大学神经解剖学的博士生,并补充说:“此外,这是一个非常有趣的候选者,因为该蛋白质在星形胶质细胞和神经元上表达。联合首先作者Alicia Weier是波恩大学神经解剖学的博士生,并补充说:“此外,这是一个非常有趣的候选者,因为该蛋白质在星形胶质细胞和神经元上表达。mlc1也是glialcam的结合伙伴。”
摘要:由于缺乏有效的治疗,高级神经胶质瘤(HGG)患者的预后很沮丧。为了改变HGG患者的命运并减少了当前与治疗相关的副作用,过去几年的治疗重点已转变为免疫疗法,例如基于嵌合抗原受体(CAR)的治疗。基于汽车的治疗的最新发展显示成人神经胶质瘤患者的有希望的结果,而针对HGG的小儿患者进行了首次临床试验。但是,小儿HGG(PHGG)及其成年对应物之间存在显着差异,包括肿瘤免疫微环境(TIME)的组成,这极大地影响了汽车治疗的反应性。因此,我们在这里提供了PHGG实体中基于汽车的治疗靶标的系统概述,重点是临床试验和临床前研究,并将其与成人神经胶质瘤进行了比较。我们得出的结论是,目标表达,时间和汽车治疗相关的毒性在PHGG实体之间有所不同,并且与成人HGG有所不同,这表明需要在PHGG中采用更量身定制的免疫治疗型汽车方法。总的来说,我们为未来开发基于汽车的治疗策略的儿科HGG患者提供了目标路线图,这些患者迫切需要新的疗法。
“根据2019年核医学和分子成像学会(SNMMI)2019年年度会议的研究,单个放射性示例可以识别近30种类型的癌症,从而在非侵入性诊断,分期和治疗中进行新的应用。这一荣誉是德国海德堡大学医院的一组研究人员,展示了FAPI Radiotracer的功效。”
背景:PI3K途径激活是前列腺癌的常见和早期事件,来自PTEN中功能突变的丧失或在PIK3CA或AKT中激活突变,导致组成型激活,诱导生长因子受体受体激酶EPHB4及其配体Ephrin-B2。我们假设诱导EPHB4是肿瘤启动所需的早期事件。其次,我们假设当前列腺癌独立于雄激素时,EPHB4仍然相关。方法:前列腺上皮中有条件PTEN缺失的遗传小鼠模型诱导所有小鼠的肿瘤。我们针对EPHB4野生型测试了该模型,并在前列腺上皮中删除。这使我们能够测试其在肿瘤开始中的作用。我们还通过使用诱饵可溶性EPHB4来阻断由Ephb4-磷蛋白-B2相互作用引起的双向信号传导测试了正交方法。EPHB4-磷蛋白-B2在雄激素剥夺小鼠中的作用在难治性癌症模型中的作用进行了测试。结果:PTEN缺失在前列腺癌中诱导Ephb4和Ephrin-B2,当在同一前列腺上皮细胞中删除EPHB4时,它大大降低了。SEPHB4-ALB融合蛋白具有改进的药代动力学类似地抑制了肿瘤的形成,从而确立了在肿瘤启动中的作用。sephb4-alb保留了抗Cantatration抗抑制雄激素独立前列腺癌的效率。因此,我们已经观察到,在PTEN NULL小鼠中启动前列腺癌需要诱导EPHB4,并且在雄激素剥夺中需要从EPHB4下游的信号传导,从而需要抑制前列腺癌。EPHB4途径的药理抑制作用再现了结果。 靶向EPHB4应在前列腺癌中进行测试,尤其是那些对雄激素剥夺疗法有抵抗力的人。 结论:ephb4和ephrin-b2受体配体对PTEN null前列腺癌被诱导,这显着促进了肿瘤起始。 其次,即使在雄激素剥夺中,EPHB4-磷蛋白-B2途径也会继续促进肿瘤进展,从而激素难治性肿瘤。 EPHB4-磷蛋白-B2可能是精密药物的候选者,具有基于生物标志物的患者选择,没有和不同时护理标准。EPHB4途径的药理抑制作用再现了结果。靶向EPHB4应在前列腺癌中进行测试,尤其是那些对雄激素剥夺疗法有抵抗力的人。结论:ephb4和ephrin-b2受体配体对PTEN null前列腺癌被诱导,这显着促进了肿瘤起始。其次,即使在雄激素剥夺中,EPHB4-磷蛋白-B2途径也会继续促进肿瘤进展,从而激素难治性肿瘤。EPHB4-磷蛋白-B2可能是精密药物的候选者,具有基于生物标志物的患者选择,没有和不同时护理标准。