在全球范围内,乳腺癌是女性中最常见的癌症形式。乳腺癌的肿瘤微环境通常表现出缺氧。缺氧诱导因子 1-alpha 是一种转录因子,在乳腺癌中被发现过度表达和激活,通过介导一系列反应在缺氧微环境中发挥关键作用。缺氧诱导因子 1-alpha 参与调节下游通路和靶基因,这些通路和靶基因在缺氧条件下至关重要,包括糖酵解、血管生成和转移。这些过程通过管理与肿瘤侵袭、转移、免疫逃避和耐药性相关的癌症相关活动,显著促进乳腺癌进展,导致患者预后不良。因此,人们对缺氧诱导因子 1-alpha 作为癌症治疗的潜在靶点有着浓厚的兴趣。目前,针对缺氧诱导因子 1-alpha 的药物研究主要处于临床前阶段,这凸显了深入了解 HIF-1 a 及其调控途径的必要性。预计未来将有有效的 HIF-1 a 抑制剂进入临床试验,为乳腺癌患者带来新的希望。因此,本综述重点介绍 HIF-1 a 的结构和功能、其在乳腺癌进展中的作用以及对抗 HIF-1 a 依赖性耐药性的策略,强调其治疗潜力。
蛋白质磷酸化过程是调节身体各种功能的关键,包括心脏泵血能力。该过程由一种称为蛋白激酶的酶控制,这种酶将磷酸基团添加到目标蛋白质上的特定氨基酸上。这种修饰会改变蛋白质的结构,导致其活性和与其他分子的相互作用发生变化。酶活性的破坏是心脏僵硬的关键原因。
摘要 胰腺导管腺癌 (PDAC) 是根据五年生存率得出的最致命癌症之一。了解化学耐药性可以制定新的治疗策略来改善患者的预后。肿瘤中高水平的 ANGPTL4 与胰腺癌的不良预后相关。我们发现 ANGPTL4 过表达会导致体外对吉西他滨产生耐药性并缩短患者的生存时间。ANGPTL4 的过表达会诱导肿瘤侵袭和转移、增殖和分化以及抑制细胞凋亡的转录特征。为了更好地了解 ANGPTL4 如何导致耐药性并探索它是否可能成为有用的治疗靶点,我们测量了 ANGPTL4 过表达或敲低的细胞的转录反应。我们还测量了吉西他滨治疗对这些细胞的影响。这些分析揭示了与 ANGPTL4 激活和吉西他滨反应相关的基因的重叠特征。患者 PDAC 组织中该标记基因表达增加与患者生存期缩短显著相关。我们确定了 42 个与 ANGPTL4 共同调控且对吉西他滨治疗有反应的基因。ITGB4 和 APOL1 就是其中之一。在过表达 ANGPTL4 的细胞系中敲低这两个基因可逆转观察到的吉西他滨耐药性并抑制与上皮间质转化 (EMT) 和 ANGPTL4 过表达相关的细胞迁移。这些数据表明 ANGPTL4 促进 EMT 并调节基因 APOL1 和 ITGB4。重要的是,我们表明抑制这两个靶标可逆转化学耐药性并降低迁移潜力。我们的研究结果揭示了调节肿瘤对治疗反应的新途径,并提出了胰腺癌的相关治疗靶点。
1. 美国阿拉巴马州伯明翰市阿拉巴马大学赫尔辛克医学院细胞、发育和整合生物学系 2. 美国佐治亚州梅肯市默瑟大学生物医学科学系 3. 美国肯塔基州列克星敦市肯塔基大学医学院 4. 美国阿拉巴马州伯明翰市阿拉巴马大学赫尔辛克医学院外科系 5. 美国阿拉巴马州伯明翰市阿拉巴马大学赫尔辛克医学院医学系 * 通讯作者:bnp0001@uab.edu
*F. A. de Simone博士,P。Bisignano博士,A。Armirotti博士,M。Summa博士,D。Pizzirani博士,R。Scarpelli博士,AD Favia博士,G。Bottegoni博士,A。CavalliItalian Institute of Technology博士,D3 VIA MOREGO GAIRE GENOVA(ITALY)F. PRATI博士,Morego Genova(Morego)阿里·博洛诺大学药学和生物技术系通过Belmeloro 6/selmi 3,40126博洛尼亚(意大利)A。de Simone博士,博洛斯诺·科索·科索(V. Andrisano)生命质量研究系教授Maetzu 9, 28040 马德里(西班牙) Dr. A. Perez-Castillo 生物医学研究所,CSIC-UAM Arturo Duperier 4, 28029 马德里(西班牙)和神经退行性疾病生物医学研究中心 (CIBERNED)(西班牙) Dr. L. Polito Golgi Cenci 基金会 Corso San Martino 10, 20081 Abbiategrasso(米兰)(意大利) Prof. Dr. M. Racchi 药物科学-药理学系,帕维亚大学 viale Taramelli 12, 27100 帕维亚(意大利)
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
浙江大学医学院附属邵逸夫医院普通外科蔡秀军课题组领导的研究通过CRISPR/cas9系统对索拉非尼治疗下的肝癌细胞(HepG2)全基因组进行筛选,筛选出了在索拉非尼耐药中占主导地位的基因:KEAP1。KEAP1调控的下游分子Nrf2是细胞抵抗活性氧(ROS)的重要分子。本研究首先通过KEAP1/Nrf2基因编辑检测索拉非尼在肝癌细胞中的IC 50 等大量功能性实验,验证了KEAP1-Nrf2轴在索拉非尼耐药中的作用。本研究发现一种名为ML385的特异性Nrf2小分子抑制剂在体内和体外均能增强索拉非尼的杀伤作用。
1 南特大学医院颌面外科系,法国 44000 南特 2 CRCI2NA-南特-昂热癌症和免疫学研究中心,法国 44000 南特 3 图卢兹癌症生物库,图卢兹大学医院 IUCT Oncopole,法国 31100 图卢兹 4 UMR1246 SPHERE(以患者为中心的结果和健康研究方法),南特大学,法国 44000 南特 5 蒂莫内医院病理学系,法国 13005 马赛 6 里尔大学医院病理学系,法国 59000 里尔 7 南锡大学医院病理学系,法国 54000 南锡 8 科钦医院病理学系,法国 75014 巴黎 9 图尔大学医院病理学系,法国 37000 图尔 10南特大学医院骨科,44000 南特,法国 * 通讯地址:helios.bertin@chu-nantes.fr;电话:+33-(0)2-40-08-36-79;传真:+33-(0)2-40-08-36-68
* 通讯作者电子邮箱:walink@iib.uam.es (WL);romano.silvestri@uniroma1.it (RS)。本文发表于《药物耐药性更新》(Elsevier,2021 年),第 100788 页。DOI:10.1016/j.drup.2021.100788 此版本为作者版本。摘要许多癌症患者经常对抗癌治疗没有反应,因为治疗耐药性是治愈癌症治疗的主要障碍。因此,确定耐药性的分子机制具有至关重要的临床和经济意义。基于对癌症的分子理解的靶向疗法的出现可以作为克服耐药性策略的模型。因此,鉴定和验证与耐药机制密切相关的蛋白质代表了一条通往创新治疗策略的道路,以改善癌症患者的临床结果。在这篇综述中,我们讨论了新兴靶点、小分子疗法和药物输送策略,以克服治疗耐药性。我们专注于基于转录因子、假激酶、核输出受体和免疫原性细胞死亡策略的合理治疗策略。从历史上看,未配体的转录因子和假激酶被认为是不可药用的,而通过抑制核输出受体 CRM1 来阻断核输出则被认为具有高度毒性。最近成功抑制 Gli HIF-1α、HIF-2α 并重新激活肿瘤抑制转录因子 p53 和 FOXO 说明了这种靶向方法的可行性和强大性。同样,在调节与治疗耐药性有关的假激酶蛋白(包括 Tribbles 蛋白家族成员)的活性方面也取得了进展。另一方面,Selinexor 是一种 CRM-1 的特异性抑制剂,CRM-1 是一种介导富含亮氨酸的核输出信号货物运输的蛋白质,已知是药物耐药性的驱动因素,它代表了抑制核输出作为克服治疗耐药性的可行策略的概念验证。
原肌球蛋白相关受体激酶 B (TrkB) 是脑源性神经营养因子 (BDNF) 的受体;其信号传导通过激活几个下游级联,有助于神经元存活、可塑性、分化和生长。缺乏细胞内激酶结构域的截短异构体 (TrkB.T1) 的过度表达与慢性疼痛的发展和持续有关。已发表的数据显示,小鼠模型中的 TrkB.T1 敲除可恢复运动功能并减轻脊髓损伤后的疼痛。我们项目的目标是确定抑制 TrkB.T1 表达的小分子作为慢性疼痛的潜在疗法,重点关注两种调节机制:(1) TrkB 前 mRNA 的差异转录后加工,以及 (2) 通过其 mRNA 的 3' 非翻译区 (3'UTR) 对 TrkB.T1 表达的转录后调节。对于第一点,我们假设两种主要 TrkB 亚型的比例主要受上游 (T1) pA 位点的切割和多聚腺苷酸化 (pA) 位点识别控制,因此抑制该位点 3'-加工的药物应能抑制 TrkB.T1 合成。对于第二点,我们假设 TrkB.T1 mRNA 3'UTR 包含调节序列,这些序列的功能可通过操纵关键反式因子的功能、表达或 RNA 结合活性的化合物进行调节,从而通过加速 TrkB.T1 mRNA 的衰变和/或抑制其翻译来抑制 TrkB.T1 的产生。对于每种机制,我们开发了独立的活细胞高通量筛选 (HTS) 检测方法,以识别可以 (1) 阻断 TrkB.T1 pA 位点的 3'-切割和多聚腺苷酸化,或 (2) 通过 TrkB.T1 mRNA 3'UTR 抑制基因表达的小分子。利用这些发现,我们旨在发现一种或多种能够抑制 TrKB.T1 表达的新药物,这些药物可在慢性疼痛的小鼠模型中作为新型镇痛药进行测试。