非酒精性脂肪性肝病 (NAFLD) 是导致肝脏疾病的主要原因,也是全球沉重的医疗负担。NAFLD 包括一系列肝脏病变,从脂肪变性到非酒精性脂肪性肝炎 (NASH)。1 后者是一种与肝细胞损伤和炎症相关的侵袭性 NAFLD;它可以发展为纤维化、肝硬化,并最终发展为肝细胞癌。2 虽然脂肪变性可以通过改变生活方式来逆转,但 NASH 通常会造成不可逆的损害,例如肝硬化。肝脏代谢失调会导致脂肪变性并进展为 NASH。因此,肝脏代谢途径已被针对以抑制 NAFLD 进展或促进 NASH 消退。胆固醇是一种主要的脂毒性分子,在 NASH 发病机制中起着核心作用。 3 角鲨烯环氧酶 (SQLE) 是内源性胆固醇生物合成途径中的限速酶,也是 NAFLD 和肝细胞癌的病因。4 因此,我们假设 SQLE 在 NAFLD 和 NASH 的发展中发挥重要作用。在本研究中,我们证明 SQLE 在 NAFLD 患者中上调。小鼠肝脏特异性 Sqle 过表达导致自发性脂肪变性,并加剧小鼠高脂肪、高胆固醇 (HFHC) 饮食诱发的 NASH。相反,Sqle 敲除 (ko) 小鼠的 NAFLD 和 NASH 较轻。通过特比萘芬对 SQLE 进行药理学抑制可改善多种小鼠模型中的 NASH。此外,血清 SQLE 可作为诊断 NAFLD 和 NASH 的新型生物标志物。
完整作者列表:Kumar, Gaurav;德里大学 - 南校区,生物化学 Saini, Manisha;德里大学 - 南校区,生物化学 Kundu, Suman;德里大学 - 南校区,生物化学
冷泉港实验室DNA 学习中心(DNALC)是世界上第一个完全致力于遗传学教育的科学中心。超过 30,000 名学生参加过我们的科学营。在经验丰富的指导老师的带领下,升6 至12 年级的学生使用先进的 实验设备和计算机设备进行领先于同侪好几个年级的实验。
致癌作用最严重的标志性步骤是氧化应激,它会诱导细胞 DNA 损伤。虽然在正常情况下 ROS 是重要的第二信使,但在癌症等病理条件下,由于氧化还原酶表达不平衡,可能会发生氧化应激。最近的研究有确凿的证据,表明氧化应激和甲状腺癌之间存在基于甲状腺激素合成的相互依赖关系。事实上,抗氧化防御系统的减弱可能在甲状腺癌进展的几个步骤中发挥作用。根据之前进行的研究,未来针对酶 ROS 源的药物设计(作为单一药剂或组合药剂)必须进行测试。多酚具有调节甲状腺癌生物事件(包括抗氧化活性)的潜力。针对酶 ROS 源而不影响生理氧化还原状态可能是一个重要的目的。至于其他癌症模型中讨论过的天然化合物的潜在化学预防机制,多酚对甲状腺癌的影响尚无定论,而且很少得到证实。因此,需要进一步科学研究多酚对甲状腺癌的抗氧化作用的特点。本综述阐明了一些多酚与甲状腺癌细胞发育过程中氧化反应中的关键酶之间的关联。本综述给出了正常生理或病理环境下酶促 ROS 源作用和氧化还原信号传导的要点,并概述了目前可用的多酚衍生的 TPO、LOX、NOX、DUOX、Nrf2 和 LPO 调节剂。
癌症治疗的合成致死策略利用癌症特异性基因缺陷来识别对肿瘤细胞存活至关重要的靶点。本文我们表明,RAD27/FEN1 编码瓣状内切酶 1 (FEN1),这是一种在 DNA 复制和修复中发挥作用的结构特异性核酸酶,与酿酒酵母基因组不稳定性基因具有最多的合成致死相互作用,是基于抑制剂的方法杀死同源重组 (HR) 缺陷癌症的可用药物靶点。研究表明,小分子 FEN1 抑制剂和 FEN1 小干扰 RNA (siRNA) 可选择性杀死 BRCA1 和 BRCA2 缺陷的人类细胞系,从而证实了 HR 缺陷癌症容易受到 FEN1 缺失的影响。此外,在小鼠中重现了对 FEN1 抑制的不同敏感性,小分子 FEN1 抑制剂降低了药物敏感但无耐药性癌细胞系中形成的肿瘤的生长。FEN1 抑制在敏感和耐药细胞系中均诱导了 DNA 损伤反应;然而,即使去除抑制剂,敏感细胞系也无法恢复和复制 DNA。尽管 FEN1 抑制在敏感细胞中将 caspase 激活到更高水平,但这种凋亡反应发生在 p53 缺陷细胞中,而泛 caspase 抑制剂无法阻断细胞杀伤。这些结果表明,FEN1 抑制剂具有治疗靶向 HR 缺陷癌症的潜力,例如由 BRCA1 和 BRCA2 突变和其他遗传缺陷引起的癌症。
冷泉港实验室DNA学习中心(DNALC)是世界上第一个完全致力于关系教育的科学中心。超过30,000名学生参加了我们的科学营。在老师丰富的指导下,升6至12年级的学生使用先进的实验设备和电脑设备进行了同侪好几个年级的实验。
异构酶有一个经验丰富的生物过程开发团队,他们与化学和合成生物学团队建设性地合作,以开发有效的,具有成本效益的方法,生产生物制药和基于生物的产品。它涵盖了广泛的活动,包括发酵优化,下游处理,分析监测,技术转移,技术经济建模,并通过设计原理通过质量通过质量进行增强的实验,将开发工具应用于较高的风险技术领域,快速跟踪进度和确保强化的过程可以进行综合准备。我们拥有创新的技术,例如我们的HIMASS(高通量微量尺寸分析筛选系统)平台,该平台生成了代表性的预测模型,以快速有效地筛选酶技术。我们可以以克至千克量表提供支持研究计划的材料。
摘要:阿霉素是一种细胞毒性蒽环类衍生物,在许多不同形式的人类癌症中被用作化学疗法,并有所成功。然而,阿霉素治疗具有多种副作用,其中最严重的是心肌病,可能是致命的。卵毛素脂质体(doxil®)中的阿霉素封装已显示可增加肿瘤定位并降低心脏毒性。相反,这种脂质体的稳定性也导致循环时间增加并在皮肤中积聚,从而导致掌骨播出器红细胞性刺耳性,同时也限制了该药物在肿瘤部位的释放。使用各种受体特异性肽和抗体的这种脂质体针对肿瘤细胞的特定靶向。 但是,靶向单个表位限制了可能的肿瘤靶标数量,并通过突变增加了肿瘤抗性的风险。 在本报告中,doxil®与源自金属蛋白酶组织抑制剂的肽序列P700偶联。使用各种受体特异性肽和抗体的这种脂质体针对肿瘤细胞的特定靶向。但是,靶向单个表位限制了可能的肿瘤靶标数量,并通过突变增加了肿瘤抗性的风险。在本报告中,doxil®与源自金属蛋白酶组织抑制剂的肽序列P700偶联。这种doxil®-P700复合物可通过小鼠和人类乳腺癌细胞和永生的血管细胞增加了大约100倍的药物吸收,导致细胞毒性增加。使用P700以这种方式靶向脂质体可能会使阿霉素或其他药物的特定输送到广泛的癌症。
酶工程是一个革命性的领域,它利用生物催化剂的潜力转化和优化工业过程,药品生产以及其他各种应用。酶,自然的分子机器,在催化生化反应中起着至关重要的作用,并且它们通过遗传和生化技术的操纵开辟了科学和技术领域的新边界。