Alperönder1,GülceDavutlar 2,Mehmet Ay 1,FerahCömertInder3 *抽象的鞘氨醇激酶(SPHKS)作为脂质激酶,催化鞘氨醇(SPH)(SPH)促成鞘氨酸1-磷酸盐(S1P)的磷酸化。靶向S1P信号通路是许多人类疾病的重要策略。在此,我们评估了药用植物的主要原型生物活性成分,并用类黄酮化合物进行了虚拟筛查研究,然后对靶向癌症治疗进行了分子对接和分子动力学(MD)模拟。通过Biovia Discovery Studio(DS)确定了计算机ADMET和吸毒结果。分子对接和分子动力学(MD)模拟是通过使用过滤的配体的Glide/SP和Desmond进行的。滑行/SP对接结果显示与Xanthohumol(Xn),8-丙烷纳明蛋白(8-PN)和Neobavaisoflavone对SPHK1的结合亲和力更高。三击在靶向SPHK1的特定氨基酸残基之间显示出强氢结合。在gromacs进行的200 ns MD模拟分析期间,SPHK1-XN和SPHK1-XN和SPHK1-Neobavaisoflavone复合物之间没有显着的结构变化。将Xn-和Neobavaisoflavone-蛋白质络合物的平均值与游离SPHK1进行比较,分别为0.2626 nm,0.2589 nm和0.2508 nm。结果,XN和8-PN和Neobavaisoflavone已被确定为SPHK1的潜在抑制剂候选者,以检查进一步的体外和体内研究。
1分子病毒与细胞生物学研究所,弗里德里希(Friedrich-lioef),弗里德里希(Friedrich-lioef),17493年,格里夫斯瓦尔德(Greifswald),德国insel riems; Julia.hoelper@flim i.de(J.E.H.); katrin.pannhorst@flim i.de(k.p.); lisa.wendt@flim i.de(l.w.); thomasc.mettenleiter@flim i.de(t.c.m.)2爱丁堡大学的罗斯林研究所(Roslin Institute),复活节灌木丛,Midlothian EH25 9RG,英国; fgrey@exseed.ed.ac.uk(F.G.); j.k.baillie@ed.ac.uk(J.K.B.); tim.regan@roslin.ed.ac.uk(T.R.); nick.parkinson@ed.ac.uk(N.J.P。)3重症监护室,爱丁堡皇家公司,爱丁堡EH25 9RG,英国4诊断病毒研究所,弗里德里希·洛夫(Friedrich-Loef),17493年,格雷夫斯瓦尔德(Greifswald) dirk.hoeper@i.de 5病毒学研究所,弗莱堡医学中心 - 79110德国弗莱堡; thiprampai@gmail.com(t.t。); martin.schwemmle@uniklinik-freiburg.de(M.S.)6弗莱堡大学Spemann生物学与医学研究生院,德国79110 79110 Freiburg 7生物学学院,弗莱堡大学,德国79110,德国79110
简单地说,绿色氢是通过使用可再生能量将水分成氢和氧气而产生的。绿色氨是由绿色氢制成的,其工艺也由可再生能源提供动力。绿色氢和氨的产生既有正面和负面的环境和社会影响。绿色氢(见表11.1)被视为全球向可持续能量和净零排放的全球温室自由能的主要载体。动量正在增长,以快速扩大绿色氢的产生,以满足IPCCC GHG减少靶标。它正在作为存储能源的一种选择(另请参阅第13章,有关其他储能选项),从具有基于氢的燃料的可再生能源可能会在长途运输(从拥有丰富能源资源的地区到数千公里远的地区)。以绿色氢的形式采用的绿色氨与绿色
奖项#DE-EE0006536 DOE总资金:$ 1,182,789首席研究员:Adrienne Lavine与K Lovegrove(IT Power Australia),P Kavehpour,R Wirz,Sepulveda,A Sepulveda,H Aryafar,H Aryafar,D Simonetti 3 Simonetti 3
•传统公用事业系统(图中间)。发电厂为电网产生电力。可以将一些热量用于地区供暖或工业系统。核电站可能包括储热,因此它们以基础负载运行,电网可变。核电站传统上是基本负荷(高资本成本,低运营成本)。历史上,化石植物提供可调节电力(低资本成本,更高的燃油成本)。风和太阳能可以提供电力,但只有在太阳熄灭并且风吹来时才可以提供电力。•低价电力消耗(图顶)。大规模风和太阳能在某些时候会导致过量产量。在某些时候,大量的核能产生过多的生产能力。在每种情况下,这种电力的燃料成本都非常低。需要有效地使用所有这些电力的方法。我们显示使用过多的电力将火砖加热到高温 - 最低的高温储热材料。通过吹冷空气来恢复热量,以产生热空气,这与燃烧化石燃料相同。这种热空气可用于发电(包括具有热力学顶循环的核电站),工业热和商业热量。这可以直接更换化石燃料。如果排气热量储存,可以燃烧储存的化石燃料,生物燃料或氢气以提供高温热。廉价的供热存储可以为电力设定最低价格。•产生氢(图的底部)。在低碳经济中,全球产量可能超过电力产量的一种能源产品是氢。这是化学过程中使用的氢:氨(肥料的产生),将铁矿石转化为替代焦炭和纤维素碳氢化合物燃料的生产,以替代所有原油。这解决了运输市场和能源存储挑战。潜在需求可能超过每年7.5亿吨氢。生产这么多氢将需要3200 GWE的核或200万平方英里的风电场,或将全球天然气的一半生产转换为氢气的一半,并通过隔离二氧化碳二氧化碳。这假设没有氢被燃烧为能源。可以将电力输出从核氢的产量转换为GIRD,从而提供3200 GWE的可调度电力,并通过存储从存储中氢提供,以维持工业设施的运行。
来自:1 贝勒医学院物理医学与康复系,德克萨斯州休斯顿;2 纽约长老会哥伦比亚与康奈尔医院康复与再生医学系,纽约州纽约市;3 匹兹堡大学医学中心麻醉系、疼痛医学分部,宾夕法尼亚州萨斯奎哈纳;4 德克萨斯大学圣安东尼奥健康科学中心物理医学与康复系,德克萨斯州圣安东尼奥;5 托马斯杰斐逊大学莫斯康复与西德尼金梅尔医学院康复医学系,宾夕法尼亚州费城;6 梅奥诊所麻醉学与围手术期医学系、疼痛医学分部,明尼苏达州罗切斯特;7 麦戈文医学院和 Cy Pain and Spine PLLC 物理医学与康复系,德克萨斯州休斯顿; 8 威斯康星大学医学与公共卫生学院麻醉系、疼痛医学科,威斯康星州麦迪逊