微生物群 - 脑轴在神经精神疾病中起关键作用,尤其是在抑郁症中。依西妥位(ESC)是第一线抗抑郁药,但是,其在抑郁症治疗中对微生物群轴轴的调节机制尚不清楚。使用Wistar-Kyoto(WKY)大鼠的强制游泳测试评估了ESC的抗抑郁作用,而肠道和大脑区域的损伤是通过H&E染色和免疫组织化学评估的。通过肠道菌群的16S rRNA测序,血清未靶向的代谢组学和海马蛋白质组学研究了具有抑郁行为的WKY大鼠的治疗机制。结果表明,ESC干预改善了抑郁样的行为,这可以通过WKY大鼠的游泳时间增加,还恢复了肠道渗透性和脑组织完整性。肠道菌群组成的显着变化,尤其是细菌型果胶的增加,以及血清鞘脂代谢物(鞘氨酸1-磷酸盐,鞘氨醇,鞘氨酸-1-磷酸盐)和海马蛋白(Sptlc1,Enpp5,Enpp5,Enpp5,eNPPE2),是ENPPP2,是ENPPP2,是ENPPE2,是ENPPE2,是ENPP2,是ENPEP2,是ENPP2,是ENPP2,是ENPP2,是ENPP2,是ENPP2,是ENPP2,是ENPP2,是ENPP2)这些可靠的相关性表明,ESC可以通过通过肠道微生物群的影响来调节鞘脂代谢来发挥其抗抑郁作用。因此,这项研究阐明了ESC抗抑郁药的效率的基础,并突出了微生物群 - 脑轴轴心在介导这些作用中的关键重要性。
摘要 — 可再生能源制氨 (RePtA) 是一种重要的零碳脱碳途径。由于可再生能源与生产能源需求之间的不平衡,RePtA 系统依赖于与电网的电力交换。以虚拟发电厂 (VPP) 的身份参与电力市场可能有助于降低能源成本。然而,当地光伏和风力涡轮机的功率分布与市场中的功率分布相似,导致传统策略下的能源成本上升。因此,我们为电力、氢气和氨市场中的 RePtA VPP 开发了一种多时间尺度交易策略。通过利用氢气和氨缓冲系统,RePtA VPP 可以最佳地协调生产计划。此外,我们发现可以在统一的框架中描述电力、氨和氢气的交易。电力市场的两阶段稳健优化模型扩展到多个市场,并通过列和约束生成 (CC&G) 算法求解。该案例源自内蒙古自治区的一个实际项目。敏感性分析证明了RePtA VPP连接多个市场相对于传统策略的经济优势,并揭示了氢和氨缓冲器和反应器灵活性的必要性。
氨被越来越多地视为一种可行的替代燃料,它可以显著减少温室气体排放,而无需对现有发动机技术进行重大改造。然而,其高自燃温度、低火焰速度和窄可燃性范围带来了重大障碍,特别是在高速燃烧条件下。本综述探讨了氨作为内燃机可持续燃料的潜力,重点介绍了其优势和挑战。本综述借鉴了从 NH 3 的生产、应用到燃烧机制的广泛研究,探索了在火花点火和压燃发动机中增强 NH ₃ 燃烧的各种策略。讨论的基本原理和关键方法包括使用氢和碳氢化合物燃料作为燃烧促进剂,这已被证明可以改善点火和火焰传播。研究了有关燃料喷射策略(例如端口燃料喷射、直接喷射和双燃料喷射)的文献,以突出它们对 NH ₃ -空气混合和燃烧效率的影响。此外,本综述还深入探讨了低温等离子点火、湍流喷射点火和激光点火等先进点火技术,以期探索克服 NH ₃ 点火困难的潜力。经过对文献的全面分析,智能液气双流体共喷射系统 (iTFI) 成为一种有前途的方法,通过更好的燃料-空气混合物制备,提供更好的燃烧稳定性和效率。通过综合现有研究,本综述概述了 NH ₃ 燃烧的进展,并确定了需要进一步研究的领域,以充分发挥其作为可持续燃料的潜力。
丙戊酸(VPA)是诱导自闭症谱系疾病(ASD)的抗癫痫和情绪稳定药物。但是,VPA具有多种副作用。肝脂肪变性,肝毒性,出血性胰腺炎,脑病,骨髓抑制和肥胖症等代谢性疾病。VPA被证明是不可避免的,在癫痫孕妇中不能排除。怀孕期间的非控制癫痫发作会给母亲和胎儿受伤。然而,VPA越过胎盘并在胎儿循环中积聚,浓度高于母体血液,从而导致毒性和致畸性。妊娠VPA治疗威胁生命的癫痫病造成了许多缺陷,包括神经管缺陷,智力障碍和认知行为障碍。8.9%的子宫中暴露于VPA的儿童会发展自闭症特征。VPA暴露是儿童发展自闭症,表现出自闭症的经典迹象以及发育和行为延迟的最高风险。VPA的完整机制并未完全引起。本综述将使用VPA时自闭症诱导涉及的可能机制讨论了规范的Wnt/β-catenin途径。
从传统的Haber-Bosch工艺开发的大多数可再生氨植物采用水电解来生产氢和空气分离,用于可再生能源的氮生产。尽管利用可再生能源的技术发展了迅速的发展,但间歇性和地理限制的特征使消除基于化石的稳定发电厂并同时满足不断增长的能量需求。这项工作从气体中设计了绿色的氨产生系统。该系统集成了一种基于胺的碳捕获工艺,用于从化石基于化石的发电厂中去除碳,并在压力摆动吸附(PSA)中纯化的氮富集(PSA),PEM水电解和Haber-Bosch工艺中的氢生产过程。该系统是在Aspen Plus V12.1中建模的,设备成本由内置的经济模型获得。模拟数据用于估计原材料和公用事业的成本。考虑到堆栈资本,LCOE和碳价格的按时间顺序变化,评估了总资本投资,总运营成本。节省碳罚款的节省成本证明了将天然气用作氮源的经济利益。通常,与IREA的预测LCOA保持一致,最低的LCOA在2025年通过使用陆上风,在2025年为936 $ t -1,2035年通过使用太阳能PV,在2035年为749 $ t -1。
大多数许可方今天都有使用多个平行过程火车的技术可提供氨开裂植物。尽管许多许可方提供了基于常规的“改革仪”技术(垂直催化剂填充的试管,而火箱中的垂直催化剂填充的管,辐射热传递到工艺管中),如灰氢的生产,氨产生和甲醇生产植物中所采用的,但在整个流动层和核心反应器部分中也观察到显着的差异。duiker的技术采用替代配置中充满催化剂的管,以防止直接暴露于火焰。H2Site的技术由一个装有催化剂的反应堆柱组成,其中包含基于PD的膜。所有许可人都证实,他们可以提供所需的H₂产品纯度和99.9 mol%和50 Barg的压力。各种技术的TRL水平为6-9。
© 2022 NPS MedicineWise。任何有关复制和权利的疑问请发送至 info@nps.org.au。独立。非营利。基于证据。在创建时已采取合理措施提供准确信息。此信息并非医疗建议的替代品,不应仅依赖其来管理或诊断医疗状况。NPS MedicineWise 对因依赖或使用此信息而造成的任何损失、损害或伤害不承担任何责任(包括疏忽)。阅读我们的完整免责声明。2022 年 9 月发布。NPS2492
氨是最广阔的化合物之一,全球年产量超过1.9亿吨(平均2019 - 2023年),其中约有1,850万吨。氨是衍生出所有基于氮的肥料的基本原料。制造氨是一种高能量密集型的Haber-Bosch工艺,因此,大气中的氮与化石燃料材料(天然气或煤炭)反应,也称为原料。氨植物需要大约32-3600万英国的热量天然气,以生产1吨氨。因此,氨植物通常位于天然气(例如在近东,俄罗斯联邦,特立尼达和多巴哥,阿尔及利亚和埃及)附近,尽管进口的液化天然气(LNG)越来越多地在印度使用。中国还具有从煤炭而不是天然气生产氨的能力。根据国际能源机构(IEA)的说法,氨产量约占最终能源总消耗总量的2.0%,占二氧化碳(CO 2)的1.3%的能源系统排放量。天然气基氨植物使用蒸汽改革过程,而煤炭植物则使用部分氧化或煤气化。
IMO 2020 和 IMO 2050。目前有几个项目正在测试使用氨作为船用燃料。国际作物营养公司 Yara 是主要的氨生产商之一,该公司计划在 2024 年前为改装后的北海补给船提供氨作为船用燃料。此外,一个由日本公司(包括三井和伊藤忠)组成的跨行业联盟正在考虑推出以氨为燃料的商用船,并在日本开发氨供应基础设施,为航运业提供替代船用燃料,以减少温室气体排放。