用电子氢替代部分化石燃料氢。这种电子氢生产的规模不一定小,因为传统的哈伯-博世合成工厂非常大。如今,工业氨生产厂平均日产氨 500-1,500 公吨 (MTPD),最大的工厂日产氨超过 3,500 公吨。以氨的大规模性为例,假设容量系数为 50%,用电子氢替代仅 200 MPTD 的产量就需要 150-200 MW 的可再生电力资源和类似规模的电解。2下一步,将利用大量可再生能源建造新的电子氨工厂。完全电子氨生产的一个挑战是需要工艺灵活性来管理可变的可再生能源,例如太阳能和风能。如今,哈伯-博世工厂基于化石燃料原料针对连续运行进行了优化,因此运行灵活性有限。灵活操作的风险包括热循环导致催化剂和设备寿命缩短以及生产效率降低。目前可以实施的一种解决方案是使用大型储氢缓冲器来管理不灵活的哈伯-博施工艺中间歇性的可再生能源原料。采用这种设计,哈伯-博施工艺将始终有恒定的原料。更好、更具成本效益的解决方案是优化哈伯-博施工艺,使产量根据可再生能源投入而变化。这种调节能力可能通过各种工厂设计和操作技术来实现。最后,电子氨合成的新技术,如低压、低温或电化学合成,仍处于实验室规模的研究阶段。近期的电子氨生产设施可能会使用哈伯-博施合成和某种形式的灵活性管理。
1。Philibert,C。可再生能源交叉边界:Ammonia等。在NH3事件中。2017。鹿特丹。2。Millar,R。等人,累积碳预算及其含义。牛津经济政策评论,2016年。32(2):p。 323-342。3。Aika,K.,Takano,T。&Murata,S。无氯氟丁氏催化剂的制备和表征以及氨合成中的启动子效应:3。镁支持的钌催化剂。J. Catal。 1992。 136,126–140。 4。 Kitano,M。等。 使用稳定电气作为电子供体和可逆氢存储的氨合成。 自然化学。 2012。 4,934–940。 5。 Sato K.等。 在氧化丙二酰烷基上支持的低晶非氨基层作为氨合成的活性催化剂。 化学。 SCI。 2017。 8,674–679。 6。 Kyriakou V,Garagounis I,Vasileiou E等。 氨的电化学合成的进展。 CATAL今天2017年。 286,2-13。 7。 ITO Y,Nishikiori T,Tsujimura H.新型熔融盐电化学过程的工业化进步。 法拉第讨论2016年。 190,307–326。 8。 Bañares-Alcántara,R。等,对基于氨的储能系统的分析。 2015,牛津大学:英国牛津大学。 p。 158。 2017。 10。J. Catal。1992。136,126–140。4。Kitano,M。等。 使用稳定电气作为电子供体和可逆氢存储的氨合成。 自然化学。 2012。 4,934–940。 5。 Sato K.等。 在氧化丙二酰烷基上支持的低晶非氨基层作为氨合成的活性催化剂。 化学。 SCI。 2017。 8,674–679。 6。 Kyriakou V,Garagounis I,Vasileiou E等。 氨的电化学合成的进展。 CATAL今天2017年。 286,2-13。 7。 ITO Y,Nishikiori T,Tsujimura H.新型熔融盐电化学过程的工业化进步。 法拉第讨论2016年。 190,307–326。 8。 Bañares-Alcántara,R。等,对基于氨的储能系统的分析。 2015,牛津大学:英国牛津大学。 p。 158。 2017。 10。Kitano,M。等。使用稳定电气作为电子供体和可逆氢存储的氨合成。自然化学。2012。4,934–940。5。Sato K.等。 在氧化丙二酰烷基上支持的低晶非氨基层作为氨合成的活性催化剂。 化学。 SCI。 2017。 8,674–679。 6。 Kyriakou V,Garagounis I,Vasileiou E等。 氨的电化学合成的进展。 CATAL今天2017年。 286,2-13。 7。 ITO Y,Nishikiori T,Tsujimura H.新型熔融盐电化学过程的工业化进步。 法拉第讨论2016年。 190,307–326。 8。 Bañares-Alcántara,R。等,对基于氨的储能系统的分析。 2015,牛津大学:英国牛津大学。 p。 158。 2017。 10。Sato K.等。在氧化丙二酰烷基上支持的低晶非氨基层作为氨合成的活性催化剂。化学。SCI。 2017。 8,674–679。 6。 Kyriakou V,Garagounis I,Vasileiou E等。 氨的电化学合成的进展。 CATAL今天2017年。 286,2-13。 7。 ITO Y,Nishikiori T,Tsujimura H.新型熔融盐电化学过程的工业化进步。 法拉第讨论2016年。 190,307–326。 8。 Bañares-Alcántara,R。等,对基于氨的储能系统的分析。 2015,牛津大学:英国牛津大学。 p。 158。 2017。 10。SCI。2017。8,674–679。 6。 Kyriakou V,Garagounis I,Vasileiou E等。 氨的电化学合成的进展。 CATAL今天2017年。 286,2-13。 7。 ITO Y,Nishikiori T,Tsujimura H.新型熔融盐电化学过程的工业化进步。 法拉第讨论2016年。 190,307–326。 8。 Bañares-Alcántara,R。等,对基于氨的储能系统的分析。 2015,牛津大学:英国牛津大学。 p。 158。 2017。 10。8,674–679。6。Kyriakou V,Garagounis I,Vasileiou E等。氨的电化学合成的进展。CATAL今天2017年。286,2-13。7。ITO Y,Nishikiori T,Tsujimura H.新型熔融盐电化学过程的工业化进步。法拉第讨论2016年。190,307–326。8。Bañares-Alcántara,R。等,对基于氨的储能系统的分析。2015,牛津大学:英国牛津大学。 p。 158。 2017。 10。2015,牛津大学:英国牛津大学。p。 158。2017。10。9 Philibert,C。生产氨和肥料:可再生能源的新机会。Olson,N。“ NH3-世界上最佳能源解决方案”,在2017年NH3活动,鹿特丹,2017年5月18日至19日。Olson,N。“ NH3-世界上最佳能源解决方案”,在2017年NH3活动,鹿特丹,2017年5月18日至19日。
大多数 OEM 使用 Neoprene ®(聚氯丁二烯)、HSN(高饱和腈)或 BUNA N(腈)密封件,REFLO A 流体与这些类型的材料完全兼容。但是,当压缩机从一种油配方或类型转换为另一种油配方或类型时,始终存在密封膨胀或收缩的风险。与环烷油或源自芳香族化学品(如烷基苯)的流体不同,REFLO A 流体几乎不会引起密封膨胀,因此不应认为与这些流体的补充兼容。虽然拧紧法兰有时可以纠正轻微泄漏,但我们建议在油转换期间应改装新的密封件。遵循 OEM 对加氢石蜡油的密封建议。
可再生能源(例如风能和太阳能)越来越多地穿透电力网格,使能量景观的电气化。1但是,这些能源是间歇性的,需要存储能源。用于短期储能(长达几天),可提供广泛的技术,包括电池和热机械存储。2相比之下,化学能源存储是长期,季节性储能的少数替代方案之一,2,3另一个主要选择是泵送水力。4,即使抽水的水电可能是在某些自然适合的区域中低成本存储的潜在解决方案,4此类系统的能量密度很低,并且泵水电在很大程度上取决于大型天然水的可用性。通常提出以氢的形式储存化学能量,以解决间歇性挑战。氢可以
本文件由澳大利亚胃肠病学会编写,在编写过程中已尽最大努力。澳大利亚胃肠病学会和本文件的其他编撰者对因使用或依赖信息而造成的任何伤害、损失或损害不承担任何责任。本作品受版权保护。您只能以未修改的形式(保留此声明)下载、显示、打印和复制本材料,供您个人、非商业使用或在您的组织内使用。除《1968 年版权法》允许的任何用途外,所有其他权利均保留。© 2021 澳大利亚胃肠病学会 ABN 44 001 171 115。
摘要:化妆品产品是我们日常生活中最重要的,常用的组件。除了改善人类健康外,它们还提供健康的生活方式并提高我们的自尊心。全球化妆品市场预计将在2021年为2870亿美元,到2022年的4150亿美元。这项研究的目的是从化妆品中分离出的细菌菌株的分离,鉴定和表征。通过在胰蛋白酶大豆琼脂培养基上接种不同的化妆品来分离六个细菌菌落。所有菌株在37°C时均显示出最佳的生长。通过使用不同培养基(例如MacConkey琼脂,SIM和Sim和Simmons柠檬酸琼脂)评估所有菌株,并通过Sanger测序进一步进行核苷酸测序。在化妆品产品中揭示了不同的细菌菌株,包括鞘氨质paucimobilis,Cytobacillus oceanisediminis,Robertmurraya Andreesnii,Cytobacillus Firmus,FalsibaCillus Pallidus和Acinetabacter Junii。发现大多数这些菌株是致病性的,但是,鞘氨拟补剂具有生物修复的潜力,可用于降解有毒化合物以使环境更好。同样,发现细胞杆菌参与生物矿化,也有助于发酵。我们的结果表明,迫切需要确保有关化妆品的严格安全法规。制造实践不当会导致化妆品的污染,这可能导致严重的健康质量。需要进一步的研究来探索这些分离株的潜力,以便可以利用它们来改善我们的健康和环境。
本最佳实践的目标是确保长春花生物碱仅通过静脉途径给药。如果通过鞘内途径而非静脉途径给药,长春花生物碱(例如,长春花 BLAS 汀、长春瑞滨、长春花 CRIS 汀、长春花 CRIS 汀脂质体)可能导致致命的神经系统影响。长春花 CRIS 汀特别成问题,是与意外鞘内给药相关的最常见报告的长春花生物碱。世界各地都报告了因用注射器将药物注射到脊髓液而不是静脉注射而导致死亡的病例。例如,全球已报告了 130 多例通过错误途径注射长春花 CRIS 汀的病例。这种情况经常发生在误用长春花 CRIS 汀注射器而不是阿糖胞苷、氢化可的松或甲氨蝶呤注射器给同一患者注射脊髓液时。当鞘内注射长春花碱时,中枢神经系统会受到破坏,并从注射部位向外扩散。这种用药错误的少数幸存者经历了毁灭性的神经损伤。尽管各国和国际安全机构一再警告,但因这种错误而死亡的事件仍然时有发生。目前市售的所有长春花碱的产品标签上都带有特殊警告(“仅供静脉注射——如果通过其他途径给药会致命”)。
1. 简介 氨因其高能量密度和碳中性而被视为未来有前途的绿色能源。然而,最大的挑战仍然是从丰富但间歇性的可再生能源中更有效地生产氨。1 在传统的氨合成中,氨通过冷凝器分离,这是能源密集型的。7 因此,改善氨合成的一个重要方面是在循环之前用固体吸收剂有效地分离氨。最近,已经提出了几种材料作为氨分离的固体介质,其中金属卤化物似乎是最可行的选择,通过协同吸收氨。12 在本文中,研究了块状氯化镁以及负载在多孔载体上的氯化镁的氨容量。
受到全球脱碳趋势的驱动,氨燃料的使用,包括氨的发展热发电和氨水燃料的海洋发动机的发展正在迅速增加。然而,氨是有毒的,令人讨厌的(进攻气味)和腐蚀性,因此在处理氨燃料时确保安全很重要。迄今为止,三菱重工有限公司(MHI)和三菱造船有限公司(MSB)已开发了用于海洋氨燃料处理的全面系统,包括氨燃料燃料供应和减少氨。氨水含量减少系统可去除在双燃料发动机中将氨燃料切换为油时,在管道清除过程中产生的有毒残留氨。该系统可以快速消除大量的氨净化气体,其浓度会发生变化,尤其是在紧急情况下(例如停电)。本报告描述了我们独特的系统,用于快速减排方法,用于从管道中获得大量和高压氨水清除气体。