熟悉,癌症(%),n = 837 53.4 52.6 54.9 0.5662熟悉度,pca(%),n = 823 12.6 11.6 11.3 15.2 0.1367心血管疾病(%),n = 875 13.6 9.1 21.1 21.5 <0.00001糖尿病(0.00001糖尿病),n = 882. 882. 0. 05.05.05.05.052.052.055 2. 055.052。 (%),n = 881 44.6 37.97 56.3 <0.00001药物(%),n = 880 67.3 60.4 79.4 <0.00001 BMI(中位数,范围),n = 832 25.6(14.9-48.2)
我们探索了矩形 Kapton 薄膜上单个折痕的粘塑性行为,Kapton 薄膜是几种受折纸启发的薄纱空间结构设计中最基本的构建块。这是折痕薄膜机械行为中经常被忽视的一个组成部分,它会影响部署动力学和可重复性。首先,我们展示了一些实验,这些实验突出了 Kapton 的粘性特性对折痕产生过程的影响,以及折痕的平衡角度如何由塑性和粘度的组合决定。作为实验的一部分,我们建立了一个强大的实验程序,能够创建可重复的折痕。然后,我们将之前的建模工作扩展到一种简单的粘塑性材料中,该材料结合了标准线性模型和摩擦元素来模拟永久变形。使用一系列 Kapton 松弛测试校准材料模型。然后,我们使用它来模拟我们的折痕实验,使用商用有限元包中的 1D 梁元素。尽管定量差异仍然很大,但我们的分析能够捕捉到实验中观察到的趋势。我们的结果强调需要对聚合物薄膜的粘塑性进行进一步的实验和建模。
引言小儿心肌病(CM)对应一组临床和遗传上异质性结构和功能障碍,影响心肌。小儿CM估计每年有100,000名儿童中有1个。扩张的CM(DCM),其特征是心室扩张和心肌连接性受损,是儿童中最普遍的亚型(1)。小儿CM的预后通常很差,尤其是在DCM中,因为大约一半的儿童需要心脏移植或在诊断后的头几年内死于心脏并发症(2)。通过下一代基因组测序的出现,对小儿CM的遗传基础的理解得到了显着改善(3)。实际上,属于心肌收缩,能量代谢和钙处理等各种分子途径的100多个基因的变体与儿科CM有关。但是,大多数报告的关联很少见,并且只有少数经过实验证实。
患有非 NF2 相关神经鞘瘤病的人可能需要经历一段漫长而有时艰难的诊断过程,这被称为诊断之旅。根据对美国两家三级医疗诊所确诊或可能患有非 NF2 相关神经鞘瘤病的 97 名患者的医疗记录的审查,我们发现患者从出现第一个症状到确诊的平均时间为 16.7 年(95% CI,7.5-26.0 年),从第一次就诊到确诊的平均时间为 9.8 年(95% CI,3.5-16.2 年)。在此期间,36% 的患者至少被误诊过一次;误诊包括潜在遗传疾病(18.6%)、疼痛病因(16.5%)和神经鞘瘤存在/病理(11.3%)(非互斥类别)。此外,19.6% 的患者明显错过了进行遗传学检查的机会,而这种检查本可以更早地诊断出神经鞘瘤。基于这些数据,我们将讨论更及时、更准确地诊断非 NF2 相关神经鞘瘤的潜在干预措施,并分享患者关于如何在发现神经鞘瘤后有效地传达诊断结果的定性发现。最后,我们将反思神经鞘瘤诊断标准的最新更新如何影响患者未来的诊断过程。
内脏器官的恶性神经鞘瘤极为罕见。迄今为止,全球文献中已报道了 19 例颈部神经鞘瘤。其中一例促使我们进行文献回顾。黑色素瘤和神经鞘瘤的鉴别诊断是使用标记物 HMB- 45 进行的,该标记物对黑色素瘤呈阳性,而对神经鞘瘤呈阴性。通过这一鉴别,我们在 20 例可能不是神经鞘瘤的病例中识别出两例。恶性颈部神经鞘瘤的预后不佳。尽管在健康组织中进行了切除,但仍有大约一半的病例在短时间内出现局部复发或远处转移。在一个病例中,基因测序揭示了一种潜在的治疗方法,即使用 mTOR 抑制剂依维莫司和曲妥珠单抗。不幸的是,无法测试这些治疗方案的潜在疗效,因为患者复发时正在另一家医院接受治疗,并且他们没有使用与 NGS 图谱相匹配的药物。
摘要 — 计算建模通常用于设计和优化电子封装,以提高性能和可靠性。影响计算模型准确性的因素之一是材料性质的准确性。特别是微机电系统传感器,通常对封装中材料性质的细微变化极为敏感。因此,即使由于样品制备方法或测试技术不同而导致的材料特性测量值出现微小变化,也会影响用于设计或分析传感器性能的计算模型的准确性。对于需要固化的材料,材料特性的挑战更大。例如,芯片粘接聚合物在制造过程中具有严格的固化曲线要求。这种固化条件通常很难在实验室中复制,并且用于材料特性分析的样品不一定代表最终产品中的实际组件。本研究调查了温度固化曲线、固化过程中施加的压力以及样品制备技术等参数对两种芯片粘接弹性体随温度变化的热机械性能的影响。使用动态机械分析和热机械分析等一系列技术测量芯片粘接材料的机械性能,包括弹性模量 (E)、热膨胀系数和玻璃化转变温度。分析针对与典型传感器应用相对应的宽温度范围进行。结果表明,样品制备和表征技术对测量有相当大的影响,从而通过计算建模得出不同的 MEMS 传感器性能预测。
物理特性与人类表皮相似的有机电子设备正在开发中。[1–4] 此类设备能够与皮肤表面的复杂特征进行非侵入式耦合,用于后续的传感任务。除了为人类开发的系统和相关诊断设备外,分析活植物产生的电信号的方法也引起了从生物学到工程学等领域越来越多的关注。[5–10] 植物通过电信号对不同刺激作出反应,例如触摸、光、伤口或其他压力源(如干燥)。[6] 植物中快速的长距离电通信与较慢的生化信号传导的比较是植物生物学和农业领域的一个重要的研究课题。 [6,11–16] 植物中的电信号在细胞和离子水平上源自与人类和动物神经细胞中不同的机制(动物神经细胞中的去极化是由钠离子的跨膜内流增加驱动的,植物电信号,即动作电位,涉及钙的内流和/或氯离子的外流)。 [17] 有必要进一步了解植物电信号并将其与生理联系起来,因为它可以成为一种工具,例如,用于更好地控制生长,以及通过施肥或施用农药以及光照/水管理来响应植物需求的系统。此外,还有一个不同的领域,试图利用植物的内在功能,如传感、通信、
摘要:随着基于低温等离子体的离子辅助表面处理的重要性日益增加,对撞击晶圆表面的离子能量的监测也变得十分重要。非侵入式、实时的、包括鞘层中离子碰撞的监测方法受到了广泛的研究关注。然而,尽管如此,大多数研究都是在侵入式、非实时、无碰撞离子鞘层条件下进行的。本文开发了一种基于离子轨迹模拟的非侵入式实时IED监测系统,其中采用蒙特卡洛碰撞方法和电模型来描述鞘层中的碰撞。我们从技术、理论和实验上研究了用所提出的方法对IED的测量,并将其与各种条件下通过四极杆质谱仪测量的IED的结果进行了比较。比较结果表明,随着射频功率的增加,IED没有发生重大变化,随着气压的增加,IED逐渐变宽,这与质谱仪的结果一致。
这种生物活性鞘脂是通过鞘氨醇磷酸化的产生的,由鞘氨酸激酶,SK1和SK2的两种同工型(Gaire and Choi,2020年)催化,然后由S1p磷酸酶和脂肪磷酸盐磷酸盐酶或子磷酸酶(S1p)closear and s1p(S1p)裂解为鞘氨酸,并将其水解回到鞘氨酸中。 2009);可以通过不同类型的膜转运蛋白(Baeyens and Schwab,2020)在细胞外导出S1P,以结合S1P 1-5并在所谓的“内外信号传导”中作用。此外,S1P还可以与细胞内靶标相互作用:核S1P降低了与转录基因调控有关的HDAC活性,并在记忆习得和恐惧灭绝记忆的髋关节功能调节中起作用(Hait等,2009)(Hait等,2014)。另外,线粒体S1P与防止素2结合,并且在调节呼吸链复合物组装和线粒体呼吸中起重要作用(Strub等,2011)。最近的研究表明,S1P与调节多种生物学事件有关,例如细胞增殖,凋亡,自噬和炎症(Cartier and HLA,2019)(Obinata和Hla,2019)(Xiao等,2023,2023)(Taha等,2006)。此外,许多最近的研究表明,S1P信号传导途径的失调参与了不同疾病的病理过程,例如癌症,糖尿病,神经退行性变性和CAR Dioseancular疾病(Takabe and Spiegel,2014,2014)(Guitton等,2014)(Guitton等,2020)(2020年)(Van Echtenten-Deckert,2023),Ala,Ala,ala amakery,Alakery,Alakery,ana amakery,AlaM。值得注意的是,S1P在缺血过程中也起着至关重要的作用(Mohamud Yusuf等,2024):的确,几项研究表明,缺血性挑战后的啮齿动物大脑中的S1P水平升高(Kimura等,2008,2008年)(Moon等,2015)(Salas-perdorcity et nirimate and in Indiending and Isporigation et and 2019),2019年(Sun。大脑损害。值得注意的,fingolimod(fty720),用于治疗复发性多发性硬化症后,在被磷酸化后,通过与五个S1P受体中的四个(S1P 1,S1P 3,S1P 4,S1P 4,S1P 5)结合起作用(Choi等人,2011)(Gr.,2011)(Gr- ^ alererererereT,2004) Brinkmann等,2010)并在脑缺血的各种啮齿动物模型中发挥神经保护作用(Czech等,2009)(Nazari等,2016)和具有脑出血的缺血性PA剂量(Fu等,2014)(Zhu等,2015)。S1P受体水平似乎在脑缺血中似乎失调:S1P受体mRNA和S1P 1,S1P 2,S1P 2,S1P 3和S1P 5的蛋白质表达在TMCAO(Salas-Perdomo等,2019)(均可用来的靶标)中,在TMCAO(Salas-Perdomo et and and Injotignt)中,在小鼠脑的不同区域中上调了小鼠脑的不同区域,治疗脑缺血(Gaire and Choi,2020年)。
