生物学学位项目,科学硕士(2年),2024年生物学学位工作60学分,硕士学位,2024年生物学教育中心和细胞和分子生物学系,乌普萨拉大学主管:StaffanSvärd教授和博士乔恩·耶尔特斯特劳姆·霍尔特克维斯特外部对手:斯瓦尔德教授
摘要 4 AM 和 0.5 AM 钒 (V) [V(V),钒酸盐] 分别完全抑制了脱膜海胆精子鞭毛和用 0.1 mM ATP 重新激活的胚胎纤毛的运动能力。0.5-1 AM V(V) 可抑制潜伏形式的动力蛋白 1 的 Mg2+ 激活 ATPase 活性 (ATP 磷酸水解酶,EC 3.6.1.3) 50%,而 Ca2+ 激活 ATPase 活性则不那么敏感。V(V) 对鞭毛摆动频率和动力蛋白 1 ATPase 活性的抑制似乎不是与 ATP 竞争的。与其他报告一致的是,V(V) 对 (NaK)ATPase 的抑制在 ATP 存在下起效较慢,而在 ATP 不存在下起效相对较快。然而,对于动力蛋白,无论是否存在 ATP,抑制都会以快速的速度发生。浓度为 1 mM 的儿茶酚可逆转 V(V) 对重新激活的精子运动、动力蛋白 ATPase 和 (NaK)ATPase 的抑制。浓度高达 500 AM 的 V(V) 对肌球蛋白和肌动球蛋白 ATPase 均无抑制作用。V(V) 的抑制提供了一种可能的技术,用于区分动力蛋白和肌球蛋白在不同形式的细胞运动中的作用。
lunula是一种单细胞生物化的恐龙。尽管在许多双重化的进化枝中都可以理解生物新蛋白质和荧光素酶合成的机理和基因,但在恐龙粉中,它仍然未知。我们利用了长时间和简短的读数,在这里介绍了P. Lunula转录组的从头大会。总共获得了9.75亿个过滤的配对读数,并将其组装成155,716个重叠群,该重叠群与功能上有功能上注释的普通成绩单相对应。该数据集对于提高我们对原生物学的理解并可以通过NCBI Bioproject(PRJNA727555)获得有价值。©2021作者。由Elsevier Inc.出版这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2025年2月19日发布。 https://doi.org/10.1101/2025.02.14.638267 doi:Biorxiv Preprint
1 捷克共和国查理大学理学院寄生虫学系 BIOCEV、Vestec、2 西布列塔尼大学、CNRS、海洋生态系统与生态联合研究中心 BEEP、IUEM、法国普卢扎讷、3 德国马尔堡马克斯普朗克陆地微生物研究所昆虫肠道微生物学和共生研究小组、4 波兰华沙大学生物学院进化生物学研究所、生物和化学研究中心、5 加拿大埃德蒙顿阿尔伯塔大学医学系传染病科、6 瑞士洛桑联邦理工学院生命科学学院;瑞士洛桑生物信息学研究所,7 生态学、系统学和进化部,巴黎萨克雷大学,法国奥赛国家科学研究院,8 捷克科学院生物中心寄生虫学研究所,捷克 Česke´ Bud ě jovice,9 俄斯特拉发大学理学院,生物学和生态学系,捷克共和国
合成生物学为工程生物系统提供了强大的工具,用于不同的应用。然而,在实现现实世界应用(例如环境生物修复或用于靶向药物的治疗微型机器人)之类的实际应用之前,主要的挑战一直存在。这项研究旨在通过在大肠杆菌中使用工程启动子调节基因表达来精确控制细菌运动。我们专注于模型生物的大肠杆菌,并通过工程化鞭毛蛋白的表达来操纵其运动,这是一种至关重要的细菌运动蛋白。为了实现这一目标,采用了特定的遗传启动子来调节鞭毛蛋白的产生,从而决定了这些细菌的运动能力。启动子启用了针对鞭毛蛋白表达的有针对性的调整,这反过来允许增强或抑制细菌运动。有趣的是,启动子设计参数与基因表达水平之间的关系是非线性的,突出了复杂的基础动力学。最佳细菌运动发生在30°C,说明了环境因素的影响。我们的发现证明了使用基因工程策略有效调节运动型等复杂微生物表型的能力。结果不仅扩展了我们对细菌基因调节的理解,而且还强调了合成生物学在创建各种生物技术应用中创建功能和适应性的微生物表型方面的变革潜力。
添加剂制造(AM)工艺,例如激光粉末床融合,可以通过分层扩散和熔化粉末来制造物体,直到创建自由形式的零件形状。为了提高AM过程中涉及的材料的特性,重要的是要预测材料表征作为处理条件的函数。在热电材料中,功率因数是对材料如何将热量转化为电的有效性的量度。虽然较早的作品已经使用各种技术预测了不同热电材料的材料表征特性,但在AM过程中尚未探索机器学习模型的实现,以预测鞭毛尿酸酯(BI2TE3)的功率因数。这很重要,因为BI2TE3是低温应用的标准材料。作为概念证明,我们使用了有关涉及的制造处理参数的数据以及在BI2TE3 AM中收集的原位传感器监视数据,以训练不同的机器学习模型,以预测其热电功率因子。我们使用80%的培训和20%的测试数据实施了监督的机器学习技术,并进一步使用了置换功能重要性方法来识别重要的处理参数和原位传感器功能,这些特征最能预测材料的功率因数。基于合奏的方法,例如随机森林,Adaboost分类器和Bagging分类器,在预测功率因数方面表现最好,而袋装分类器模型则达到了90%的最高精度。此外,我们发现了前15个处理参数和原位传感器功能,以表征材料制造属性(例如功率因子)。这些功能可以进一步优化,以最大程度地提高热电材料的功率因数,并提高使用该材料制造的产品的质量。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2021年1月8日。 https://doi.org/10.1101/2021.01.01.07.425829 doi:Biorxiv Preprint
能够自我维持定向运动的人工系统在开发许多具有挑战性的应用方面具有很高的兴趣,包括医疗和技术应用。在合成生物学的背景下,自下而上地组装这样的系统仍然是一项具有挑战性的任务。在这里,我们通过将光可切换的光合囊泡与脱膜鞭毛相结合,展示了人工光驱动能量模块和运动功能单元的生物相容性和效率,从而在光照时为运动蛋白分子马达提供 ATP。鞭毛推进与其拍打频率相结合,光能触发的 ATP 动态合成使我们能够根据光照控制鞭毛的拍打频率。与不同的生物构件(如生物聚合物和分子马达)相结合的光能功能化囊泡可能有助于自下而上地合成人工细胞,这些细胞能够经历马达驱动的形态变形并以光可控的方式表现出定向运动。
摘要 在之前的研究中,我们建立了正向遗传筛选,以确定领鞭毛虫 Salpingoeca rosetta 多细胞发育所需的基因 (Levin 等人,2014)。然而,领鞭毛虫反向遗传工具的缺乏妨碍了对基因功能的直接测试,并阻碍了将领鞭毛虫确立为重建其现存近亲动物起源的模型。在这里,我们通过设计一个可选择的标记来富集编辑细胞,在 S. rosetta 中建立了 CRISPR/Cas9 介导的基因组编辑。然后,我们使用基因组编辑来破坏 S. rosetta C 型凝集素基因 rosetteless 的编码序列,从而证明其对于多细胞莲座丛发育的必要性。这项工作推动了 S. rosetta 作为一个模型系统的发展,以研究从遗传筛选和基因组调查中识别出的基因如何在领鞭毛虫中发挥作用并进化为动物生物学的关键调节器。