目前,过滤并不总是在小型水系统中使用,但是,USEPA临时增强的地表水处理规则下的最新监管要求可能会使大多数供水系统中的滤水器过滤。水过滤是通过经过颗粒物材料将悬浮和胶体颗粒从水中分离出来的物理过程。过滤过程涉及紧张,沉降和吸附。随着泡沫进入过滤器,滤网之间的空间被堵塞,从而减少了开口并增加了去除。仅是因为它在媒体谷物上固定而被去除。最重要的过程之一是将泡沫吸附到单个滤网的表面上。这有助于收集泡沫并减少过滤介质晶粒之间的开口大小。除了去除淤泥和沉积物,泡沫,藻类,昆虫幼虫以及任何其他大元素外,过滤还有助于清除细菌和原生动物,例如贾第鞭毛虫兰布利亚和隐孢子虫。一些过滤过程也用于去除铁和锰。过滤是通过将水通过多孔
简介 在目前情况下,人们正在努力实现更可控的药物在体内分布,同时减少副作用。无法达到所需治疗水平的药物被纳入从微米到纳米范围的不同载体系统中。蛋白质衍生的纳米颗粒是可生物降解、无抗原性、可代谢的。由于蛋白质的明确一级结构,它们可以促进药物的共价附着。最近,白蛋白、豆球蛋白和明胶被广泛用于这些制剂中。由于其可生物降解和无毒的特性,它已成为最突出的大分子载体,1 它们被广泛用于制备纳米球和纳米胶囊。它是一种主要的蛋白质,具有易于制备所需尺寸和存在反应性基团(硫醇、氨基或羧基)配体结合以进行共价连接的优点。在这里,白蛋白充当延缓剂,即有助于实现延长释放。上述优点为作者使用白蛋白制备甲硝唑 (MZ) 纳米颗粒提供了基础。 MZ 是一种结肠靶向药物,对溶组织内阿米巴和蓝氏贾第鞭毛虫有效。2,3
替硝唑(TNZ,化学结构式见图1)是第二代硝基咪唑类抗生素1,具有抗菌、抗炎作用,被广泛应用于防治阿米巴原虫、阴道滴虫、贾第鞭毛虫病等感染,也在畜牧业和水产养殖业中用作生长促进剂。2~4然而,随着替硝唑的广泛使用和缺乏适当的监管,环境问题进一步加剧,在一些污水处理厂和淡水系统中被检测到了替硝唑的存在。5残留在水中的替硝唑,即使是低浓度的,也会对人类和环境造成长期的潜在威胁。6因此,如何有效地从环境中去除替硝唑是一个亟待解决的问题。相对于替硝唑降解的研究,其他硝基咪唑的降解方法较多,如吸附、生物降解、Fenton法、光催化等。吸附法广泛应用于有机废水的处理,例如moral-Rodriguez的工作表明,罗硝唑(RNZ)可以通过p-p相互作用吸附在颗粒活性炭(GAC)上。7但这种方法并不能真正去除污染物,只是将污染物从水相转移到固相。8生物方法是另一种常用的方法,但一般比较耗时,
表 2-1。空气污染物清单,第 14 页表 2-2。气态污染物的允许标准,第 15 页表 2-3。恶臭的允许标准,第 18 页表 2-4。I 类和 II 类臭氧消耗物质,第 19 页表 2-5。颗粒污染物的允许标准,第 22 页表 2-6。蒸汽发电机组的排放标准,第 24 页表 2-7。减少灰尘的最佳管理实践,第 25 页表 3-1。地表水处理要求,第 37 页表 3-2。总大肠菌群监测频率,第 39 页表 3-3。无机化学 MCL,第 40 页表 3-4。无机物监测要求,第 41 页表 3-5。不同温度下的推荐氟化物浓度,第 42 页表 3-6。铅和铜水质参数的监测要求,第 42 页表 3-7。合成有机化学 MCL,第 44 页表 3-8。合成有机化学监测要求,第 47 页表 3-9。消毒剂/消毒副产物监测要求,第 56 页表 3-10。放射性核素 MCL 和监测要求,第 51 页表 3-11-1.1。0.5°C 或更低温度下游离氯灭活贾第鞭毛虫囊肿的 CT 值*,
摘要:通过开放式沟渠排出的废水对家庭和饮用水分配线构成了污染的威胁。这项研究评估了饮用水和废水的细菌和寄生虫负荷。总共从三个Addis Ketema和Akaki/Kaki/Kately子城市的三个Woredas中收集了205个饮用水和废水样品,并分析了肠道病原体的总生物嗜性菌细菌,肠内肠菌,肠结肠造物,总结肠菌群,以及原生动物和Helminth Parasity parasiqual and Parasiciqual和Parasiciqual and Parasiquiquic和Parasiquiquic and Parasiciqual and Parasiqual和Parasiquiqual。来自两个子城市的废水样品均具有有氧嗜嗜性细菌,肠杆菌和总大肠菌群的平均计数,高于log 6 cfu/ml(CV,<10%)。两个子城市中饮用水的肠杆菌和总大肠菌的数量超出了允许的水平(> log 2 CFU/ml)。饮用水中有氧嗜性细菌,肠杆菌和大肠菌群的平均计数(log cfu/ml)在p = 0.013(CI:-0.82722,0.27937)显示出显着差异; p <0.001(CI:-1.797,-3.358)和p <0.001(CI:-2.289,-0.759)分别在两个子城市之间。从表面废水样品中,只有总大肠菌数显示出显着差异,而p = 0.008(-1.149,0.003),但是,有氧细菌p = 0.764(-0.022,0.434)和0.115(-0.115(-0.115(-0.33)),有氧细菌P = 0.764(-0.022,0.434)的平均值无显着差异。没有遇到沙门氏菌或志贺氏菌。各种非乳糖发酵革兰氏阴性细菌,主要由proteus spp缩小。,铜绿假单胞菌和亚藻素粪便从两个亚城的废水中分离出来。废水中的原生动物和蠕虫寄生虫和饮用水样品主要由贾第鞭毛虫,Taenia spp和Ascaris lumbricoides主导。总而言之,研究子城市中的饮用水被各种机会病原体和疾病污染,导致寄生虫。因此,研究子城市中的家庭应在食用前治疗饮用水。负责当局应定期检查饮用水分配线的完整性。关键字/短语:Addis Ketema,Akaki/Kality,Addis Ababa,饮用水,废水,微生物
动基体是单细胞鞭毛虫,其名称来源于“动基体”,这是单个线粒体内的一个区域,其中包含高 DNA 含量的细胞器基因组,称为动基体 (k) DNA。这种线粒体基因组的一些蛋白质产物被编码为隐基因;它们的转录本需要编辑才能生成开放阅读框。这是通过 RNA 编辑实现的,其中小调控向导 (g)RNA 指导在特定转录本区域内的每个编辑位点正确插入和删除一个或多个尿苷。很难准确了解动基体中 kDNA 的扩展及其独特的尿苷插入/删除编辑的进化。在这里,我们解析了早期分支动基体锥虫中的 kDNA 结构和编辑模式,并将它们与研究较为深入的锥虫进行比较。我们发现它的 kDNA 由约 42 kb 的环状分子组成,这些分子包含 rRNA 和蛋白质编码基因,以及 17 个不同的约 70 kb 的重叠群,每个重叠群平均携带 23 个假定的 gRNA 位点。这些重叠群可能是线性分子,因为它们包含重复的末端。我们的分析发现了一个具有独特长度和序列参数的假定 gRNA 群体,相对于这种寄生虫的编辑需求而言,这个群体是巨大的。我们验证或确定了四个编辑的 mRNA 的序列身份,包括一个编码 ATP 合酶 6 的 mRNA,该 mRNA 之前被认为缺失。我们利用计算方法表明,T. borreli 转录组包含大量具有不一致编辑模式的转录本,显然是非规范编辑的产物。与其他研究的动基体相比,该物种利用了最广泛的尿苷缺失来加强隐基因产物的氨基酸保守性,尽管插入仍然更频繁。最后,在三个经过测试的动质体线粒体转录组中,原始线粒体读段中尿苷缺失比与完全编辑的、具有翻译能力的 mRNA 对齐更常见。我们得出结论,kDNA 在已知动质体中的组织代表了编码 mRNA 和 rRNA 的环状分子的分区编码和重复区域的变异,而 gRNA 基因座位于高度不稳定的分子群中,这些分子在不同菌株之间的相对丰度存在差异。同样,虽然所有动质体都具有保守的机制来执行尿苷插入/缺失类型的 RNA 编辑,但其输出参数是物种特异性的。2022 作者。由 Elsevier BV 代表计算和结构生物技术研究网络出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creative-commons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
BACTERIA and FUNGI / BACTERIA and FUNGI Bordetella bronchiseptica 3 weeks 06/01/2025 0/6 LDA Culture 0/156 CAR bacillus Annually 29/04/2024 0/6 BD ELISA 0/6 Clostridium piliforme (tyzzer) 12 weeks 5 0/6 BD IFA 0/36 Corynebacterium kutscheri 3 weeks 06/01/2025 0/6 LDA Culture 0/156 Dermatophytes (if lesion) 3 weeks 0/01/2025 0/6 LDA Lesion/Culture 0/156 Encephalitozoon cuniculi 29/04/2025 Annually. 2024 0/6 BD IFA 0/6 Helicobacter spp 12 weeks 27/01/2025 Negative (pool) BD PCR 0/26 (pool) Klebsiella oxytoca/pneumoniae 3 weeks 0/01/2025 0/6 LDA Culture 0/156 Mycoplasma pulmonis 12 weeks. 01/2025 0/6 BD IFA 0/36 Pasteurellaceae 3 weeks 06/01/2025 0/6 LDA Culture 0/156 Actinobacillus spp. 3 周 2025 年 6 月 1 日 0/6 LDA 培养 0/156 嗜血杆菌属。 3 周 06/01/2025 0/6 LDA 培养 0/156 溶血曼海姆氏菌 3 周 06/01/2025 0/6 LDA 培养 0/156 巴氏杆菌属。 3 周 06/01/2025 0/6 LDA 培养 0/156 多杀性巴氏杆菌 3 周 0/01/2025 0/6 LDA 培养 0/156 嗜肺巴氏杆菌 3 周 0/01/2025 0/6 LDA 培养 0/156 海藻巴氏杆菌 周 06/01/2025 0/6 LDA 培养 0/156 肺孢子菌属。 3 周 2025 年 1 月 27 日 0/6 BD PCR 0/156 沙门氏菌属。3 周 06/01/2025 0 / 6 LDA 培养 0 / 156 念珠状链杆菌 3 周 06/01/2025 0 / 6 LDA 培养 0 / 156 β-溶血性链球菌(非 D 组) 3 周 06/01/2025 0 / 6 LDA 培养 0 / 156 肺炎链球菌 3 周 06/01/2025 0 / 6 LDA 培养 0 / 156 体内寄生虫 / 体内寄生虫 原生动物 3 周 06/01/2025 0 / 6 LDA OD/M 0 / 156 内阿米巴属 3 周 06/01/2025 0 / 6 LDA OD/M 0 / 156 鞭毛虫3 周 06/01/2025 0 / 6 LDA OD/M 0 / 156 球虫 3 周 06/01/2025 0 / 6 LDA OD/M 0 / 156 蠕虫 3 周 06/01/2025 0 / 6 LDA OD/M 0 / 156 绦虫 3 周 06/01/2025 0 / 6 LDA OD/M 0 / 156 线虫 3 周 06/01/2025 0 / 6 LDA OD/M 0 / 156 体外寄生虫 / 体外寄生虫 螨虫 3 周 06/01/2025 0 / 6 LDA OD/M 0 / 156 皮螨 / 毛螨 3 周06/01/2025 0 / 6 LDA OD/M 0 / 156 环境螨 / 表面螨虫 3 周 06/01/2025 0 / 6 LDA OD/M 0 / 156 毛囊螨 / 毛囊螨 3 周 06/01/2025 0 / 6 LDA OD/M 0 / 156 虱子/虱子 3 周 06/01/2025 0 / 6 LDA OD/M 0 / 156 虱子/跳蚤 3 周 06/01/2025 0 / 6 LDA OD/M 0 / 156 检查 尸检/尸检 与观察到的组织病理学病变相关的病理学3周2025 年 1 月 6 日 0 / 6 LDA Ob/Hist 0 / 156 与病变相关的微生物 3 周 2025 年 1 月 6 日 0 / 6 LDA 培养 0 / 156 病毒 大鼠冠状病毒 (RCV/SDAV 涎腺腺炎) 6 周 2025 年 1 月 27 日 0 / 6 BD IFA 0 / 156 汉坦病毒 每年 2024 年 4 月 29 日 0 / 6 BD IFA 0 / 6 小鼠腺病毒 (MAD) 1 型 (FL) 每年 2024 年 4 月 29 日 0 / 6 BD IFA 0 / 6 小鼠腺病毒 (MAD) 2 型 (K87) 每年 2024 年 4 月 29 日 0 / 6 BD IFA 0 / 6 大鼠细小病毒 6 周2025/01/27 0 / 6 BD IFA 0 / 156 Kilham 大鼠细小病毒 (KRV) 6 周 2025/01/27 0 / 6 BD IFA 0 / 156 大鼠细小病毒 6 周 2025/01/27 0 / 6 BD IFA 0 / 156 大鼠细小病毒 (RPV) 6 周 2025/01/27 0 / 6 BD IFA 0 / 156 Toolan 的 H-1 病毒 6 周 2025/01/27 0 / 6 BD IFA 0 / 156 小鼠肺炎病毒 12 周 2025/01/08 0 / 6 BD IFA 0 / 36 呼肠孤病毒 3 型 (Reo 3) 每年 2024/04/29 0 / 6 BD IFA 0 / 6 仙台病毒 12 周 08/01/2025 0 / 6 BD IFA 0 / 36 类泰勒病毒 ('大鼠泰勒病毒') 6 周 27/01/2025 0 / 6 BD IFA 0 / 156
微生物是没有显微镜的微小生命形式。他们约占地球生物的60%。“微生物”一词是指各种微观生物,包括细菌,真菌,病毒,古细菌和生物。这些微生物可能对人类无害或有害。一些微生物会引起严重的感染和疾病,而另一些微生物有助于维持环境平衡。古细菌是单细胞原核生物,具有与细菌不同的细胞壁结构。它们包含独特的脂质,使它们能够在极端环境中蓬勃发展。古细菌也可以在人类的肠道和皮肤中找到。微生物,包括微生物,是作为单细胞或簇存在的微观生命形式。有七种主要类型:细菌,古细菌,原生动物,藻类,真菌,病毒和多细胞动物寄生虫(Helminths)。古细菌由于其独特的细胞壁结构和缺乏肽聚糖而与真实细菌区分开。它们是可在极端条件下生存的原核细胞。一些古细菌组包括甲烷基因,卤素,热疗法和精神病/冷冻剂。这些生物使用各种能源,例如氢气,二氧化碳,硫或阳光(光营养形式)来存活。真核生物是包含核和复杂细胞器的单细胞或多细胞细胞。他们使用专业结构通过光合作用或吸收/摄入获得滋养。大多数真核细胞具有真实的核,并且主要是多细胞的。在数量,生物量和多样性方面,最大的微生物群是真核生物。鞭毛使用类似鞭子的结构进行运动;纤毛具有微小的跳动头发; Amoeboids采用伪虫; Sporozoans是非运动的。由几丁质组成的细胞壁支持各种营养方法:分解器吸收有机材料,共生体与植物形成关系,寄生虫与宿主有害相互作用。真菌产生称为菌丝的丝状管,骨料形成菌丝体。繁殖是通过释放孢子而发生的。非细胞实体由核酸核心组成,这些核酸核心被蛋白质涂层包围,缺乏繁殖外宿主细胞或独立代谢的能力。他们可以感染原核细胞和真核细胞,从而导致疾病。真核生物(如扁虫和round虫)共同称为蠕虫,在技术上不是微生物,而是微生物生命阶段,对于临床目的而言很重要。微生物的生物实体太小,无法用肉眼看到。例子包括细菌,古细菌,藻类,原生动物和微观动物(如尘螨)。尽管它们的重要性,但这些生物在历史上被低估了,直到Antonie van Leeuwenhoek发明了显微镜。发现微生物的发现使路易斯·巴斯德(Louis Pasteur)意识到许多疾病是由它们引起的,促进了巴氏杀菌的实践以确保食品安全。今天,我们认识到微生物在各种环境中的作用,包括水,土壤,动物皮肤和消化道。这种理解强调了免疫系统在预防疾病中的重要性。微生物在生态系统中起着重要作用,就像其他生物一样。细菌,特别是与引起疾病的病原体有关,但也具有帮助人类的有益特性。研究表明,古细菌与Eubacteria明显不同,甚至可能与人类更紧密相关。古细菌可以在各种环境中找到,包括水,土壤和我们的消化系统,它们有助于维持我们的健康。他们也可以在极端条件下繁衍生息,例如高温,酸度或咸味,使其成为温泉的常见居民和大多数生物体敌对的其他地区。几种动物物种以微观形式出现,包括节肢动物,旋转膜,loricifera,nematodes和原生动物。原生动物是一组单细胞的真核生物,其比细菌或古细菌的细菌更像动物和植物。它们会引起几种严重的人类疾病,例如疟疾,弓形虫病,贾第鞭毛虫,非洲卧铺疾病和chagas病。像酵母一样的微观真菌对人类无害,但在烘烤和酿造中起着至关重要的作用。酵母以糖为食,并将其转化为二氧化碳和乙醇,这会导致烘焙食品上升和发酵饮料变得陶醉。模具是微生物,与真菌具有某些特征但不是真正的真菌。它们包括感染植物并在过去引起毁灭性作物失败的致病霉菌。粘液模具是能够令人印象深刻的合作的单细胞生物,许多细胞聚集在一起以作为一个实体运行。科学家已经使用粘液模具来研究智能和解决问题。微观藻类曾经被认为是植物,但现在被认为是导致陆地植物的谱系的亲属。这些光合生物在整个历史中都很重要,有助于将氧气泵入大气中。藻类既可以通过清洁水,产生氧气或产生最终在我们的海鲜和饮用水中产生的有毒化合物来受益和伤害人类。科学家正在努力进行分类的其他许多微观生物。过去,许多微生物被聚集在“生物学家”的类别下,但是许多科学家现在认为该系统不足。在这里,科学家曾经使用文章文本,曾经使用一个称为“ Protista”的王国对无法识别为植物,动物或真菌的真核生物进行分类。然而,遗传分析揭示了该群体的许多成员与其他王国更紧密相关,而不是彼此之间的关系。不同的微生物可能对人类无害或有害,例如链球菌细菌,会导致链球菌喉咙和猩红热,以及乳酸杆菌,这有助于抵抗诸如胃流感之类的疾病。微生物提出的新发现已经根据光学显微镜研究推翻了先前的假设,揭示了对微生物的更复杂的理解。研究的进步导致了过去十年来我们对这些微小生命形式的理解的重大转变,并继续迅速发展。