法明顿 —“我爱孩子,”Reid P. Newey 在接受戴维斯学区负责人的任命时说道。“我想让我们的学生拥有尽可能光明的未来。”11 月 1 日,学区教育委员会一致通过任命 Newey 为该学区第 18 任负责人。委员会主席 Gordon Eckersley 称赞 Newey 拥有“丰富多样的经验”,包括担任校长的经历,以及管理学区财务和监督韦伯学区建设项目的经历,他现在是韦伯学区的助理负责人。“他与商界和民间领袖合作得很好,所做的一切都富有创新精神和协作精神,”Eckersley 说道。作为负责人,Newey 将负责监督 5,989 名员工的工作和 72,212 名学生的教育。委员会审查了 17 位候选人的申请,并将 10 位推荐给董事会。董事会成员在选择 Newey 之前对这 10 位候选人进行了面试。
4.1。 div>Gaganyaan…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… div> 空间碎片………………38 4.3。 div> Ankraksha地区太空的私营部门合作伙伴关系............................................................................................................................................................................................................................... 41 4.4。 div> 黑洞(黑洞)………………………………43 4.5。 div> 詹姆斯·韦伯(James Webb)空间望远镜:JWST:………………………………………………………………45 4.6。 div> 帕克任务.......................................... 46 4.7。 div> 太空任务中的核技术.... 49 4.8。 div> Artemis Accords ...... 50 4.9。 div> 正面多余......... 51 div>Gaganyaan…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… div>空间碎片………………38 4.3。 div>Ankraksha地区太空的私营部门合作伙伴关系............................................................................................................................................................................................................................... 41 4.4。 div>黑洞(黑洞)………………………………43 4.5。 div>詹姆斯·韦伯(James Webb)空间望远镜:JWST:………………………………………………………………45 4.6。 div>帕克任务.......................................... 46 4.7。 div>太空任务中的核技术.... 49 4.8。 div>Artemis Accords ...... 50 4.9。 div>正面多余......... 51 div>
约翰·M·格伦斯菲尔德是一名科学家和前宇航员,在载人太空探索、空间科学任务和国家空间政策方面具有丰富的领导经验。他曾担任美国宇航局宇航员、科学副局长和华盛顿特区美国宇航局总部首席科学家。作为副局长,他的职责包括每年 70 亿美元的地球科学、天体物理学、行星科学、太阳物理学、詹姆斯·韦伯太空望远镜和 NOAA 气象卫星计划。此前,他曾担任巴尔的摩空间望远镜科学研究所副主任,管理哈勃太空望远镜和即将推出的詹姆斯·韦伯太空望远镜的科学项目。格伦斯菲尔德的科学研究领域是行星科学和寻找地球以外的生命。他对地球和气候科学以及应对气候变化的策略有着深厚的了解。格伦斯菲尔德也是一名狂热的探险家,喜欢登山、骑自行车、航海和驾驶小型飞机。
法明顿 —“我爱孩子,”Reid P. Newey 在接受戴维斯学区负责人的任命时说道。“我想让我们的学生拥有尽可能光明的未来。”11 月 1 日,学区教育委员会一致通过任命 Newey 为该学区第 18 任负责人。委员会主席 Gordon Eckersley 称赞 Newey 拥有“丰富多样的经验”,包括担任校长的经历,以及管理学区财务和监督韦伯学区建设项目的经历,他现在是韦伯学区的助理负责人。“他与商界和民间领袖合作得很好,所做的一切都富有创新精神和协作精神,”Eckersley 说道。作为负责人,Newey 将负责监督 5,989 名员工的工作和 72,212 名学生的教育。委员会审查了 17 位候选人的申请,并将 10 位推荐给董事会。董事会成员在选择 Newey 之前对这 10 位候选人进行了面试。
摘要。我们报告了调整詹姆斯·韦伯太空望远镜(JWST)设计的调查,满足了Origins太空望远镜的需求和要求。引入并详细介绍了JWST设计的设备和JWST设计的绝缘材料所需的修改和隔热。Webb热模型被修改为原始设计,并用于预测18和4.5 K的热载荷。我们还描述了JWST中红外仪器的冷冻仪所需的开发,以达到原始温度所需的温度。讨论了各种修改的冷冻机的功能。我们表明需要三个修改的冷却器来实现起源所需的性能。最后,我们证明可以在韦伯体系结构中容纳基线仪器和所需的冷却器以获得数量,质量和功率。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.jatis.7.1 .011006]
2022 年 3 月 30 日 — MMCS(SW/AW/SS) MICHAEL S. SEARS JR. (多米尼加共和国)。面板#1B。 CDR RICHARD L. DULDULAO。 CMDCM(SW/AW) 基思·A·韦伯 (DC)。 DCCM(SW/AW) 霍勒斯·约翰逊 JR.
詹姆斯·韦伯太空望远镜是太空中最强大的望远镜,它似乎比当前理论预期的更早探测到了星系结构的形成。该项目的目的是使用一种精髓型理论来解释早于预期的结构形成,该理论假设宇宙膨胀和暗能量具有相同的起源。这是使用弗里德曼方程完成的,将能量密度项替换为体积时间相关的初始能量项,该初始能量项旨在表示暗能量。这一变化基于这样的假设:暗能量正以光速被另一个相反的宇宙输送到这个宇宙中。新的暗能量理论包括膨胀状态和宇宙学常数状态,如宇宙学标准模型中所述,但与现有哈勃参数的时间依赖性并不完全匹配。这一新理论为早期星系形成的变化提供了一种解释,但尚未成功;然而,调整理论可以更好地适应詹姆斯·韦伯望远镜的观测结果。更好地理解宇宙及其形成将进一步加深科学家对宇宙当前内容及其必然终结的理解。
磁场传感器(磁力计)是一种测量磁场大小、方向或相对变化的装置。最早的磁场传感器是指南针,用来确定地球磁场的方向 [1]–[4]。可以说,第一台磁力计是由卡尔·弗里德里希·高斯于 1833 年发明的,用于测量绝对磁强度 [3]–[7]。它由一个由金纤维水平悬挂的永久条形磁铁组成。高斯用它来测定地球磁场的强度。他们与威廉·爱德华·韦伯一起继续开发磁力计,并对其进行了进一步改进,直到 19 世纪 40 年代末。除了高斯和韦伯之外,其他几位科学家在 19 世纪也开发了新型磁场传感器。然而,20 世纪初,磁力仪技术发生了根本性变化,当时人们开始利用通过某些线圈结构的电流来确定局部磁场的特性 [3]–[14]。这种新方法使得开发更精确的磁场传感器成为可能,同时大大缩短了测量时间。20 世纪中叶以来,材料科学的进步带来了非常精确的微型磁力仪,如今,这种磁力仪被认为是多个系统的关键组件 [8]–[12], [15]。
磁场传感器(磁力计)是一种测量磁场强度、方向或相对变化的设备。最早的磁场传感器是指南针,用于确定地球磁场的方向 [1]–[4]。可以说,第一台磁力计是由卡尔·弗里德里希·高斯于 1833 年发明的,用于测量绝对磁强度 [3]–[7]。它由一根金纤维水平悬挂的永久条形磁铁组成。高斯用它来测定地球磁场的强度。他们与威廉·爱德华·韦伯一起继续开发磁力计,并进一步改进它,直到 19 世纪 40 年代末。除了高斯和韦伯,19 世纪还有其他几位科学家开发了新型磁场传感器。然而,磁力仪技术在 20 世纪初发生了根本性变化,当时通过某些线圈结构的电流被用于确定局部磁场的性质 [3]–[14]。这种新方法使得开发更精确的磁场传感器成为可能,同时显著缩短了测量时间。从 20 世纪中叶开始,材料科学的进步带来了非常精确的微型磁力仪,如今,磁力仪被认为是多个系统的关键组件 [8]–[12]、[15]。
• 詹姆斯韦伯太空望远镜 (JWST) 是一款主要用于进行红外天文学研究的太空望远镜。它是有史以来发射到太空的最强大的望远镜,其红外分辨率和灵敏度大大提高,可以观测到哈勃望远镜无法观测到的古老、遥远和暗淡的物体。 • 美国国家航空航天局 (NASA) 与欧洲航天局 (ESA) 和加拿大航天局 (CSA) 合作领导了 JWST 的研发。美国宇航局戈达德太空飞行中心 (GSFC) 负责管理望远镜的研发,巴尔的摩的太空望远镜科学研究所运营 JWST,主承包商是诺斯罗普·格鲁曼公司。 • WST 的主镜由 18 个镀金铍制成的六角形镜面部分组成,组合起来形成一个 6.5 米(21 英尺)[23] 直径的镜子,而哈勃的镜子直径为 2.4 米(7.9 英尺)。这使韦伯望远镜的集光面积大约是哈勃望远镜的 6.25 倍(25.37 平方米 vs. 哈勃望远镜的 4.0 平方米)。与在近紫外、可见光和近红外(0.1-1.0 微米)光谱中进行观测的哈勃望远镜不同,詹姆斯·韦伯望远镜将在较低的频率范围内进行观测,从长波可见光(红色)到中红外(0.6-28.3 微米)。 • 望远镜必须保持极冷,低于 50 K(-223 °C;-370 °F),才能在不受其他热源干扰的情况下观察红外微弱信号。它部署在靠近日地 L2 拉格朗日点的太阳轨道上,距离地球约 150 万公里(930,000 英里),其五层风筝形遮阳板可保护它免受太阳、地球或月球的加热。 • 它于 2021 年 12 月搭乘欧空局的阿丽亚娜 5 号火箭从法属圭亚那库鲁发射升空。