本文介绍了一项为期五年的合作,该合作处于人机交互 (HCI) 艺术实践与科学研究的交叉点。我们合作工作的核心是一种混合艺术与科学方法,将计算学习技术(机器学习 (ML) 和人工智能 (AI))与交互式音乐表演和编舞相结合。本文首先阐述了我们对结合艺术、科学、运动和声音研究的想法。然后,我们描述了我们的两件艺术作品 Corpus Nil 和 Humane Methods——相隔五年创作——它们具体化了我们的合作研究过程。我们通过我们的研究兴趣和当时的文化环境来展示科学和艺术动机。最后,我们回顾了合作期间开发的方法论以及计算学习技术从机器学习到人工智能的概念转变及其对音乐表演的影响。
书面确认报名后,请在 6 月 10 日前提交相应比赛曲目的 5 份乐谱、简谱或说明(装订版)。 2025 至:德国联邦国防军军乐中心,Oberstabsfeldwebel Kempe,53109 波恩。建议:使用追踪功能发货!除“Essential Elements Volume 1”、“Best of Bläserklasse”和“Bläserklasse Live”中的表演曲目外
本测试方法是评估建筑构件隔音性能和空间间隔音性能的一套标准的一部分。它旨在使用标准敲击机在现场测量房间之间的撞击声隔离,或估算通过安装在建筑物内部的楼板-天花板隔断构件的撞击声传输的下限。该套件中的其他内容包括在受控实验室环境中测量通过隔离楼板-天花板组件的撞击声传输(测试方法 E492 ),在受控实验室环境中测量隔离隔断构件的空气声传输损失(测试方法 E90 ),在现场测量与建筑构件相关的空气声隔离和空气声传输损失(测试方法 E336 ),在现场测量通过建筑物立面和立面构件的声音传输(指南 E966 );并在受控实验室环境中测量两个房间之间通过公共静压室的声音传输(测试方法 E1414)。
Changhui Li, l,m Meng Yang, n, * Sheng Wang, c, * and Jie Tian h,o,p, * a Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China b School of Engineering Science, University of Science and Technology of China, Hefei, China c Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China d Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Hefei, China e College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China f School of Information Science and Technology, ShanghaiTech University, Shanghai, China g Shanghai Clinical Research and Trial Center, Shanghai, China h CAS Key Laboratory of Molecular Imaging,中国科学院自动化研究所中国北京,国家生物医学成像中心,北京大学,北京,中国北部,n超声部门,复杂严重和稀有疾病的州主要实验室,北京联合医学院医院,中国医学科学院和北京联合医学院,北京,北京,北京,工程学,北京大学,北京大学北京,中国
固溶体合金的声子散射是降低晶格热导率的一种已证实的机制。Klemens 分析模型既可以作为工程材料的预测工具,特别是在热电领域,也可以作为快速发展的复杂和缺陷材料热传输理论的基准。本评论/综述概述了用于预测由于合金散射引起的热导率降低的简单算法,以避免常见的误解,这些误解会导致对质量涨落散射的大幅高估。Klemens 空位散射模型预测的散射参数比通常假设的要大近 10 倍,但由于误差抵消,这种巨大的影响常常无法检测到。Klemens 描述可推广用于对具有缺陷的复合材料的从头算计算。解析近似与实验和理论的接近性揭示了从复杂性中出现的简单现象和降低热导率的未知机会。
Multibeam Echosounder(MBE)已成为海底映射的主要工具。技术进步和改进的数据处理方法提高了测深测量的准确性和空间分辨率,并且还导致了MBES反向散射数据的使用越来越多,用于海底地质和底栖生物栖息地映射应用。MBES BackScatter现在经常用于表征海洋陆战队和动物区系的栖息地,有助于开发有效的海洋空间规划和管理策略,并且通常可以更好地对海床进行分类。最近,进一步的技术进步使得在多声纳操作频率(多频反向散射)下对反向散射的获取和分析具有后续的潜在利益,可改善海底表征和分类。本评论重点介绍了与多频的海流声学反向散射相关的当前可用的同行评审论文,从而对不同底栖环境的贡献进行了全面的摘要,为相关应用程序和概述挑战和研究指示奠定了基础。
超声被定义为频率高于 20 kHz 的周期性振动声波。14 这些声波可用作一种独特的诊断方式,在医学上提供非侵入性实时成像。15 此外,超声自 20 世纪初以来就一直用于治疗,具有许多优势,例如易于应用和时空控制。16 – 18 医学超声根据频率和应用分为三类:低频超声描述低于 1 MHz 的声波,可用于超声导入、透皮渗透性增强、超声杀菌剂和组织消融。19,20 应用安全性随着频率的增加而提高,因为对组织的损伤和过热减少。中频超声介于 1 至 5 MHz 之间,高频超声描述高于 5 MHz 的声波。
•按照地图法院命令和2020年,埃斯科姆随后在比勒陀利亚高等法院发布了申请,该申请寻求一项命令直接向消费者电力网,并根据地图市政判决获得付款。萨尔加(Salga)并未作为这些诉讼的有兴趣的政党加入,尽管以前进行的谈判和萨尔加(Salga)在市政领域的地位。在萨尔加(Salga)意识到此类应用时,此事已经处于高级阶段,我们的指示是在此时进行干预。然后,我们自由写信给Eskom的律师,告知他们Salga对申请的立场,并要求他们撤回此类申请。迄今为止,他们尚未响应或撤回其申请,但我们知道他们从那以后就一直没有坚持使用。
如果区域内有行人或障碍物,传感器将会检测到,机器人将就地停止,重新配置避让路线并继续清洁。 为了确保安全,该车还配备了多个传感器,并具有在自动驾驶时通过语音引导和闪光灯向附近人员发出警报的功能。
本文档的范围和目的噪声和音景计划2023-2028是威尔士关于声景的国家战略,这意味着在上下文中,一个人或人所感知或经历和/或理解的声音环境。威尔士人民可能听到的所有形式的空中声音都被认为是本文件的范围。并非所有控制威尔士空降噪声的政策杠杆都被放弃了。例如,军事活动,机场行动,工作场所噪音的监管,娱乐许可和产品安全标准是对英国政府保留的事项。但是,在军事活动和机场的耳罩中的主席和建设是一个权力下放的问题,围绕娱乐场所,卫生服务的运作(可以要求治疗患有职业或娱乐听力损害的患者)以及向公众提供健康建议的患者。我们尚未确定任何形式的机载噪声,这些噪音是为了影响下放的公共机构在影响结果中没有任何作用。尽管不受声景的技术定义的涵盖,但威尔士政府认为机载声音对陆地野生动植物,宠物和养殖动物的影响在本文件的范围内。但是,重点仅放在空气环境上。水下声音落在本文档范围之外。此策略必须包括评估和降低噪声污染水平的政策。在2023年12月4日之前。本文件旨在满足这两个法律要求。2023年3月20日介绍给塞内德(Seendd),环境(空气质量和音景)(威尔士)法案1将要求威尔士部长准备并发布一项策略,其中包含对威尔士音景评估和管理的政策。如果威尔士部长在法案获得皇家同意之前制定了这样的战略(希望在2024年),则该策略将被作为该法案根据该法案获得皇家同意的国家景观的国家战略。2006年《环境噪音(威尔士)条例》要求威尔士部长必须审查,如有必要,在我们以前的合并行动计划2中包含的现有环境噪声行动计划2,在采用后五年不得晚,即