ᵝ䚻䛺㡿ᇦ䛻ர䜛 Brain Computer Interface 䠄 BCI 䠅䛾◊✲䛜 ┒䜣䛻⾜䜟䜜䛶䛔䜛䠊 BCI ◊✲䛿㐠ື㔝䛾ほ 䛛䜙ᶵჾ᧯స 䜢┠ᣦ䛩䜒䛾䛜ඛ⾜䛧䛶䛔䜛䛜 [1][2] 䠈㡢ኌゝㄒ䛻㛵䜟䜛 BCI ◊✲䜒䠈 fMRI 䜔 PET 䛷㘓䛥䜜䛯䝕䞊䝍䛾ほ 䛛䜙䠈ᴫᛕ ㉳ Æ ゝㄒ⾲⌧䝥䝷䞁䝙䞁䜾 Æ 㡢⠇䞉༢ㄒ䞉ᩥ⾲⌧ Æ Ⓨヰ㐠ື ⚄⤒⣔䛾άື䛻⮳䜛▱ぢ䛜✚䛥䜜䠈◊✲䛜άⓎ䛻䛺䛳䛶䛔 䜛 [3][4] 䠊䛣䛾ศ㔝䛷䛿 ECoG 䜢⏝䛔䛯◊㻌㻌㻌㻌㻌㻌㻌✲䛜ඛ⾜䛧 䛶䛔䜛䛜䠈㠀くⓗ䛻䛛䛴䝸䜰䝹䝍䜲䝮䛻ಙྕ䜢ほ 䛷䛝䜛 EEG 䜔 MEG 䛜ᐇ⏝䜢⪃䛘䜛䛸ᮃ䜎䛧䛔䠊 ሗ࿌⪅䜙䛿㡢ኌ㉳䛾 EEG ಙྕ䜢ᑐ㇟䛻䠈 ” ゝㄒ⾲㇟䛿 ▷㛫 tone-burst Ἴ⩌䛷䛒䜛 ” 䛸䛾௬ㄝ䜢❧䛶䠈⥺䝇䝨䜽䝖䝹≉ ᚩ㔞䜢ᢳฟ䛧䛯ᚋ䠈䝇䝨䜽䝖䝹䝟䝍䞊䞁䛛䜙┠ど䝷䝧䝸䞁䜾䛷 ㉳༊㛫䜢ྠᐃ䛩䜛䛸ඹ䛻䠈 0 䛛䜙 9 䛾 10 ᩘᏐ䛸ẕ㡢㡢⠇䛻ྵ䜎 䜜䜛 17 㡢⠇䜢ศ㢮䛩䜛◊✲䜢⾜䛳䛶䛝䛯 [5] 䠊ᮏሗ࿌䛷䛿䠈᭱ ึ䛻 17 㡢⠇䜢୕䛴䛾㡢⠇䜾䝹䞊䝥 ( ẕ㡢㡢⠇䠈᭷ኌ㡢⠇䠈↓ ኌ㡢⠇ ) 䛻ศ䛡䛶ㄆ㆑䛧䛯㝿䛾ᐇ㦂⤖ᯝ䜢㏙䜉䜛䠊䛣䛾ᐇ㦂䛷 䛿Ꮫ⩦䝕䞊䝍ᩘ䜢ቑ䜔䛩䛯䜑䠈 (i) ᩘᏐ㡢ኌ㉳ ( 䛾ྛ㡢⠇䝕 䞊䝍 ) 䛸ู䛻䠈㡢⠇⾜ (/ga- gi- gu- ge- go/) 䜢㉳䛧䛶᥇ྲྀ䛧䛯䝕 䞊䝍䜢Ꮫ⩦䛧䛯ሙྜ䠈 (ii) 㡢⣲䜢ྵ䜐㡢⠇ (/g/ = /ga, gi, gu, ge, go/, /o/ = /o, ko, so, to, no,…../) 䛛䜙㡢⣲䝕䞊䝍䜢Ꮫ⩦䛧䛯ሙྜ䠈 䛻䛴䛔䛶䜾䝹䞊䝥ෆ䛾㡢⠇䜢ㄆ㆑䛧䛯⤖ᯝ䜢ሗ࿌䛩䜛䠊 ⥆䛔䛶䠈ಶ䚻䛾㡢⠇㆑ู䜢┠ᶆ䛻䠈ከ㔞䝕䞊䝍䛾㞟䜢⾜䛖䠊 ⬻Ἴ㘓䛷䛿䠈⣧㡢䝖䝸䜺䞊䛾┤ᚋ䛻 1 ▷㡢⠇䛾㡢ኌ㉳䜢⾜ 䛖䛣䛸䛷䠈 1 ᅇ䛾㉳㘓㛫䜢▷䛟䛧䠈ከ㔞䝕䞊䝍䜢㘓䛷䛝 䜛䜘䛖䛻䛧䛯䠊䛣䜜䛻䜘䛳䛶䠈␚䜏㎸䜏䝙䝳䞊䝷䝹䝛䝑䝖䝽䞊䜽 (CNN) 䛺䛹䛾῝ᒙᏛ⩦ᑟධ䛜ྍ⬟䛻䛺䜛䠊ᮏᩥ䛷䛿䠊≉ᚩ㔞䛸 䛧䛶⬻ෆ✵㛫䛾 RMS ሗ䜢ᢳฟ䛧䠈 0 䛛䜙 9 䛻ྵ䜎䜜䜛 10 ಶ 䛾ᩘᏐ䛸ẕ㡢㡢⠇䛾 17 㡢⠇䜢䠈ḟඖ␚䜏㎸䜏䝙䝳䞊䝷䝹䝛 䝑䝖䝽䞊䜽䜢⏝䛔䛶㡢⠇ㄆ㆑䛩䜛䠊
摘要 - 在输入非字母语言的字母时,有两种输入界面:罗马输入或输入语言字母。当输入日文字母时,日文五十字母类型界面比字母界面更有效。在使用 EEG 输入字母的界面中,使用视觉诱发电位之一的稳态视觉诱发电位 (SSVEP) 的界面称为 SSVEP-脑机接口 (BCI)。本研究的目的是设计和评估使用日文五十字母类型的 SSVEP-BCI,它比使用字母表的罗马字母输入更有效。为了处理 SSVEP-BCI 中的 50 种不同输入类型,我们提出了刺激频率设计和显示空间融合和分析算法等方法。特别是,使用显示空间中的位置关系对 SSVEP-BCI 的分析方法包含许多新颖之处。结果,我们实现了 77.10% 的准确率和 75.08 位/分钟的 ITR。这相当于每分钟输入15.42个50字的日文字母。我们还评估了显示空间中输入和输出对象的位置关系。研究表明,由于选择了显示空间中水平相邻的对象,因此存在许多误判。
09:00-09:50 Tadaki(国家传染病研究所)感染性病理学对Covid-19的贡献10:00-10:00-10:50 Yamazaki Akira(大阪大学)(大阪大学)细胞介导的免疫反应对SARS-COV2 11:00-11:00-11:00-11:00-11:50 ARASE NAO(OSAKA NAO)介绍了OSAKA NAO(OSAKA NAO),以下简13:00-13:50 Nishiura Hiroshi(京都大学)Covid -19的传染病流行病学194:00-14:50 Sato Yoshi(Tokyo)新颖的Coronavirus大学的演变15:00-15:00-15:50-15:50
1 )美国国家科学、工程和医学院医学研究所。人非圣贤,孰能无过。华盛顿哥伦比亚特区:美国国家科学院出版社;2001。 2 )美国国家科学、工程和医学院医学研究所。改善医疗保健诊断。华盛顿哥伦比亚特区:美国国家科学院出版社;2016。 3 ) Rajkomar A,Dean J,Kohane I。医学中的机器学习。N Engl J Med 2019;380:1347―58。 4 ) Crombie DL。诊断过程。J Coll Gen Pract 1963;6:579―89。 5 ) Sandler G。临床医学中病史的重要性以及不必要检查的成本。Am Heart J 1980; 100: 928 ― 31。6)Heneghan C,Glasziou P,Thompson M,Rose P,Balla J,Lasserson D 等. 初级保健中使用的诊断策略. BMJ 2009; 338: b946。7)Shimizu T,Tokuda Y. 枢轴和集群策略:预防诊断错误的措施. Int J Gen Med 2012; 5: 917 ― 21。
人工智能(AI)是一种具有学习、推理和判断能力,模仿人类智能的计算机程序。人工智能的基础是机器学习,机器学习又可分为监督学习(机器根据正确答案数据进行学习)和非监督学习(机器无需正确答案数据即可学习并分类特征)。监督学习是主要方法。在机器学习中,神经网络是一种模仿人类神经元的人工神经元组合而成的分层系统,当层数变得更深时,就称为深度学习。 .深度学习的进步极大地提高了人工智能的性能。人工智能正在被应用到各个领域,其中人工智能在临床实践中的应用尝试正在加速。近年来有关人工智能在神经系统疾病治疗中的应用的报道迅速增加。人工智能已经用于神经影像分析,但最近它已应用于自动语音识别 (ASR) 和自然语言处理 (NLP)。利用人工智能通过可穿戴设备和视频进行访谈和神经系统发现的数字化运动分析,现在可以使用人工智能来分析以前难以处理的神经学发现。这是可能的。此外,从血液、脑脊液等生物样本中寻找生化生物标志物的研究也在进行中,利用AI对多组学数据进行分析的研究也备受关注。未来,预计AI的进一步发展将实现更加准确的诊断和预后预测。
1. 医疗法.......................................................................................................................... 10
近年来,以深度学习为核心的机器学习技术以及大数据的日益普及,人工智能技术备受关注。美国FDA已批准了100多种基于AI的医疗器械。在日本,多种基于AI的医疗器械也已获批并应用于临床。本综述介绍了日本医疗AI研发的现状及面临的挑战,并讨论了医疗AI研发的未来方向。(2022年1月11日收稿;2022年2月9日接受)