作为美国总统唐纳德·特朗普(Donald Trump)在一月份上任第二任期,对乔·拜登(Joe Biden)政府的遗产进行了批判性评估可能有助于告知印度 - 美国双边关系。在拜登总统的领导下,印度与美国之间的双边纽带稳步发展,通过大型销售获得了动力,并受到结构连续性的加强。双边防御关系得到了加强,并建立了一个技术主导的框架,系统选择了在印度太平洋中以技术为导向的合作意图的系统。关于关键和新兴技术的计划还将注意力与双边伙伴关系中的技术和创新重定向。在特朗普的第二个任期中,印度 - 美国关系有望连续性和进一步合并。特朗普2.0可能会保持战略联系的势头,尤其是在国防合作,能源合作和技术共享等领域,同时重新校准了有关地质经济事务的方法,例如贸易,关税和印度对共享安全性的贡献。
Sevagram,Wardha指导者:H.S.Belsare摘要:在这项研究中,一种新型的自动驾驶汽车导航算法,避免了与行人和临时障碍的碰撞。提出的算法通过使用RGB-D深度传感器来预测临时障碍和徘徊的行人的位置。考虑到这些环境不确定性,介绍了唯一的临时视觉流动性规则。提出了一种深入的增强学习(DRL)算法作为决策技术(以引导自动驾驶工具无事发生)。比较了深层Q-NETWORK(DQN),双重Q-Network(DDQN)和Dueling Double Deep Q-Network(D3DQN)算法,并且D3DQN的负率最少。我们使用CARLA模拟环境测试了算法,以检查RGB-D和RGB-LIDAR的输入值。构成综合神经网络D3DQN的一系列算法被选为最佳DRL算法。在减慢城市流量的建模中,RGB-D和RGB-LIDAR产生的结果基本相同。修改了更新的儿童驾驶汽车的自动驾驶版本,以证明拟议算法的实时效率。索引术语:自动驾驶工具,深度加固学习,临时凸进,避免障碍物,车道检测,对象检测。1。引言临时或临时障碍,例如路障,坑洼,速度颠簸和漫游行人,可能会为印度和类似国家的自动驾驶车辆提供挑战。另外,自动驾驶车辆可以使用Vanet(车辆临时网络)与路边单元或另一个移动车辆进行通信,以收集有关事故,道路障碍,交通拥堵和天气状况的最新信息。这种类型的信息对于允许自动驾驶车辆安全行驶并防止道路事故也很重要。研究人员已将传感器安装在车辆上,以识别临时障碍,例如,一些研究人员使用这些传感器来指导自动驾驶车辆,例如,一些研究人员开发了一种基于智能手机的Ad Hoc-Obstacle检测算法。同时,在中央服务器上记录了有关已确定障碍物(类似位置)的信息,并用于提醒其他驾驶员在同一道路上行驶的驾驶员。
㉳⬻Ἴ䛿Ⓨヰ⬻Ἴ䛸䛿␗䛺䜚䠈ṇ☜䛺㉳้䛜 ᫂░䛷䛒䜛䛸䛔䛖ၥ㢟䛜䛒䜛䠊䛭䛣䛷䠈ᅗ 2 䛾㘓䝥䝻䝖䝁䝹䛻䛚 䛔䛶䠈⿕㦂⪅䛿⣧㡢䛜㬆䜚⤊䜟䛳䛯┤ᚋ䛻㉳䜢㛤ጞ䛧䛶䛔䜛 䛸௬ᐃ䛧䠈 1 ༢ㄒ䛾㉳㛫䜢 400ms 䛸⪃䛘䠈 0-400ms( ⣧㡢┤ ᚋ :0ms) 䜢ゎᯒ༊㛫䛸䛩䜛䠊 3.2 ⠇䛷ㄝ᫂䛧䛯 6 䛴䛾≉ᚩ㔞䛩䜉 䛶䜢⏝䛔䛯䛯䜑䠈ධຊḟඖᩘ䛿䠈 ( ⥺䝇䝨䜽䝖䝹௨እ䛾 5 䛴䛾≉ ᚩ㔞㽢 21ch 䠇⥺䝇䝨䜽䝖䝹 25 ḟඖ ) 㽢 2( ᖹᆒ䛸ᶆ‽೫ᕪ ) 䛾 260 ḟඖ䛷䛒䜛䠊 10 ྡ䛾⿕㦂⪅䛾ᖹᆒṇゎ⋡䜢ᅗ 6 䛾䛂 0- 400ms ༊㛫䛃䛻♧䛩䠊ᅗ 6 䜘䜚䠈ṇゎ⋡䛿 20% 䜋䛹䛷䛒䜚䠈ㄆ㆑ 䛷䛝䛶䛔䛺䛔䛣䛸䛜䜟䛛䜛䠊 ṇゎ⋡䛜ప䛔ཎᅉ䛾୍䛴䛸䛧䛶䠈ṇ☜䛺㉳༊㛫䛜≉ᐃ䛷 䛝䛶䛔䛺䛔Ⅼ䛜ᣲ䛢䜙䜛䠊䛭䛣䛷䠈㉳⬻Ἴ䛸ྠ䛨䝥䝻䝖䝁䝹 䛷㘓䛧䛯Ⓨヰ⬻Ἴ䛻╔┠䛧䛯䠊ྠ䛨䝥䝻䝖䝁䝹䛷㘓䛧䛶 䛔䜛䛣䛸䛛䜙䠈Ⓨヰ䛸㉳䛾㛤ጞ้䜔⥅⥆㛫䛿ᴫ䛽୍⮴䛩 䜛䛸௬ᐃ䛧䛯䠊䛭䛧䛶Ⓨヰ㛫䜢䜒䛸䛻ゎᯒ༊㛫䜢Ỵᐃ䛩䜜䜀䠈 ㉳༊㛫䛷䛾ㄆ㆑ᐇ㦂䛜⾜䛺䛘䜛䛿䛪䛷䛒䜛䠊௨ୖ䛾䛣䛸䛛䜙䠈 Ⓨヰ⬻Ἴ䜢㘓䛧䛯㝿䛻㘓㡢䛧䛯㡢ኌ䝕䞊䝍䛛䜙ྛ⿕㦂⪅ 䛾ᩘᏐ䛤䛸䛾Ⓨヰ㛫䜢⟬ฟ䛩䜛䠊 ⿕㦂⪅䛤䛸䛾Ⓨヰ㛤ጞ㛫䛾ᖹᆒ䜢ぢ䛶䜏䜛䛸䠈䛹䛾⿕㦂⪅ 䜒 250ms ௨㝆䛻Ⓨヰ䜢㛤ጞ䛧䛶䛚䜚䠈⣧㡢䛾㬆䜚⤊䜟䜚┤ᚋ䛻 Ⓨヰ䜢㛤ጞ䛧䛶䛔䜛⿕㦂⪅䛿䛔䛺䛛䛳䛯䠊䜎䛯䠈⿕㦂⪅䛻䜘䛳 䛶㛤ጞ㛫䛿␗䛺䛳䛶䛔䛯䠊䛥䜙䛻䠈ྠ䛨ᩘᏐ䛻䛚䛡䜛⿕㦂⪅ 䛤䛸䛾Ⓨヰ⥅⥆㛫䛾ᖹᆒ䜢ぢ䛶䜏䜛䛸䠈䛣䛱䜙䜒⿕㦂⪅䛻䜘䛳 䛶␗䛺䜛䛣䛸䛜䜟䛛䛳䛯䠊䛣䛾⤖ᯝ䛛䜙䠈ゎᯒ༊㛫䛸䛧䛶䛔䛯 0- 400ms 䛿ᐇ㝿䛾㉳༊㛫䛸䛝䛟␗䛺䛳䛶䛔䜛ྍ⬟ᛶ䛜㧗䛔䠊 䜘䛳䛶䠈㉳䛾ゎᯒ༊㛫䜢ྛ⿕㦂⪅䛾༢ㄒ䛤䛸䛾Ⓨヰ㛤ጞ 㛫䛸⤊㛫䜢䜒䛸䛻ኚ᭦䛧䠈ᨵ䜑䛶㡢ኌ㉳༢ㄒㄆ㆑ᐇ㦂 䜢⾜䛖䠊
本文档的范围和目的噪声和音景计划2023-2028是威尔士关于声景的国家战略,这意味着在上下文中,一个人或人所感知或经历和/或理解的声音环境。威尔士人民可能听到的所有形式的空中声音都被认为是本文件的范围。并非所有控制威尔士空降噪声的政策杠杆都被放弃了。例如,军事活动,机场行动,工作场所噪音的监管,娱乐许可和产品安全标准是对英国政府保留的事项。但是,在军事活动和机场的耳罩中的主席和建设是一个权力下放的问题,围绕娱乐场所,卫生服务的运作(可以要求治疗患有职业或娱乐听力损害的患者)以及向公众提供健康建议的患者。我们尚未确定任何形式的机载噪声,这些噪音是为了影响下放的公共机构在影响结果中没有任何作用。尽管不受声景的技术定义的涵盖,但威尔士政府认为机载声音对陆地野生动植物,宠物和养殖动物的影响在本文件的范围内。但是,重点仅放在空气环境上。水下声音落在本文档范围之外。此策略必须包括评估和降低噪声污染水平的政策。在2023年12月4日之前。本文件旨在满足这两个法律要求。2023年3月20日介绍给塞内德(Seendd),环境(空气质量和音景)(威尔士)法案1将要求威尔士部长准备并发布一项策略,其中包含对威尔士音景评估和管理的政策。如果威尔士部长在法案获得皇家同意之前制定了这样的战略(希望在2024年),则该策略将被作为该法案根据该法案获得皇家同意的国家景观的国家战略。2006年《环境噪音(威尔士)条例》要求威尔士部长必须审查,如有必要,在我们以前的合并行动计划2中包含的现有环境噪声行动计划2,在采用后五年不得晚,即
摘要 我们提出 AI-Lyricist:一个根据所需词汇和 MIDI 文件作为输入来生成新颖而有意义的歌词的系统。这项任务涉及多项挑战,包括自动识别旋律并从多声道音乐中提取音节模板、生成与输入音乐风格和音节对齐相匹配的创意歌词以及满足词汇约束。为了应对这些挑战,我们提出了一个自动歌词生成系统,该系统由四个模块组成:(1)音乐结构分析器,用于从给定的 MIDI 文件中获取音乐结构和音节模板,利用预期音节数的概念更好地识别旋律;(2)基于 SeqGAN 的歌词生成器,通过策略梯度进行多对抗训练优化,使用双鉴别器进行文本质量和音节对齐;(3)深度耦合的音乐歌词嵌入模型,将音乐和歌词投射到联合空间中,以便公平比较旋律和歌词约束;以及一个名为 (4) Polisher 的模块,通过对生成器应用掩码并替换要学习的单词来满足词汇约束。我们在超过 7,000 个音乐歌词对的数据集上训练了我们的模型,并通过主题、情感和流派方面的手动注释标签进行了增强。客观和主观评价均表明 AI-Lyricist 在所提出的任务上的表现优于最先进的技术。
《减弱音爆:异形音爆演示器和安静超音速飞行的探索》是对 2009 年初我有幸撰写的案例研究“减弱音爆:NASA 50 年的研究”的后续。这项相对较短的调查发表在《NASA 对航空学的贡献》第一卷(NASA SP-2010-570)中。尽管我之前熟悉航空史,但最初,我还是犹豫不决,是否要接触这个似乎如此深奥且技术性极强的话题。值得庆幸的是,一些有关过去超音速计划的信息性参考资料已经可以帮助我入门,最著名的是埃里克·M·康威的《高速梦想:NASA 和超音速运输的技术政治,1945-1999》,这本书在“减弱音爆”和随后的前四章中被频繁引用。中断两年之后,我在 2011 年 3 月恢复了音爆研究,并撰写了这本新书。我非常感谢著名航空历史学家理查德·P·哈利恩博士给我的机会,让他就这个迷人的主题进行写作。哈利恩博士是《美国国家航空航天局对航空的贡献》和新美国国家航空航天局 (NASA) 丛书的编辑,本书是该丛书的一部分。在扩充、更新并希望改进我之前的叙述的同时,本书的主要焦点是诺斯罗普·格鲁曼公司 (NGC) 以及一个由政府和行业合作伙伴组成的多元化团队所取得的突破,他们证明了飞机可以设计成显著降低音爆强度。我在 2008 年 12 月和 2011 年 4 月访问加利福尼亚州爱德华兹的德莱顿飞行研究中心 (DFRC) 期间得到了帮助,并通过电话和电子邮件与 DFRC 人员进行了交流,这对我的一手资料研究大有裨益。图书管理员 Karl A. Bender 博士向我介绍了 NASA 一流的科学和技术信息资源,并在 Freddy Lockarno 的帮助下,帮助我收集了大量重要文件。航空历史学家 Peter W. Merlin 在 Dryden 的档案馆藏中为我找到了其他资料来源。Dryden 的主要音爆研究者 Edward A. Haering 提供了宝贵的原始资料,回答了问题,并审阅了涉及他项目的章节。同事工程师 Timothy R. Moes 和试飞员 James W. Smolka 和 Dana D. Purifoy 帮助我提供了额外的
图4显示了使用20倍交叉验证估计每个受试者的回忆间隔的结果。在图 4 中,横轴是时间,纵轴是来自 5 个受试者的 200 个样本(总共 1000 个样本)的准确率。红框内是语音回忆部分。前文研究 [2] 中的方法(图 4 中的蓝线)的准确率在语音回忆片段之间下降到 0.2,而本文提出的方法(图 4 中的橙线)则达到了 0.8 的稳定准确率。 从这些结果可以看出,可以说所提出的方法对于估计回忆间隔是有效的。然而,当我们观察所提出的方法在语音回忆部分之外的准确度时,我们发现与以前的研究相比,该方法将语音回忆部分之外的部分估计为回忆率的情况更为常见。这被认为是由于大脑中噪音的影响。因此,我们旨在通过将增加的 10 个样本应用于所提出的方法来减少这种噪音。结果就是图4中的绿线。在保持回忆部分的准确度的同时,非回忆部分的准确度得到了提高。基于这些结果,我们研究了所提出方法的最佳添加次数。结果如图5所示。图 5 显示了所有受试者对每个加法数字的准确率。蓝线表示整个时间内的平均准确率,橙线表示回忆期间的最大准确率。横轴是添加的样本数量,纵轴是准确率。通过添加 sigma,回忆部分的准确率得到了提高,达到了约 90%。另外,10 次添加等于 1 个样本。