背景 通过国家合作研究基础设施战略 (NCRIS) 计划,澳大利亚治疗创新协会、澳大利亚 Phenomics 和 ANSTO 的国家氘化设施支持国家研究基础设施网络,以应对 2021 年国家研究基础设施 (NRI) 路线图中的医疗产品挑战。我们共同为学术研究人员和中小企业提供各种澳大利亚转化医学研究能力,从健康和疾病的分子基础到临床试验。为了鼓励他们利用这些能力,TIA 开发了管道加速器,这是一项有竞争力的代金券式计划,可以补贴获取各种先进能力的成本。在此管道加速器轮次中,TIA 正在与澳大利亚 Phenomics 和 ANSTO 的国家氘化设施 (NDF) 合作,以扩大发现和转化医学研究所需的翻译专业知识清单。
摘要:本文提出了一种学习世界模型的方法,用于在一堆土壤上执行自动装载动作。数据驱动的模型被学会了输出所得的桩状态,负载质量,时间和工作,并在给定输入的单个加载周期中工作,其中包括自动桶装控制器的初始桩形状和动作参数的高度图。在动态变化的环境中进行连续加载的长马计划被作为重复模型推断。由深神经网络组成的模型对来自3D多体动力学模拟的数据进行了培训,该数据对不同形状的砾石堆中的10,000多个随机加载动作进行了培训。预测负载性能的准确性和推理时间平均在1.2 ms中为95%和4.5 ms的97%。长马预测。
㉳⬻Ἴ䛿Ⓨヰ⬻Ἴ䛸䛿␗䛺䜚䠈ṇ☜䛺㉳้䛜 ᫂░䛷䛒䜛䛸䛔䛖ၥ㢟䛜䛒䜛䠊䛭䛣䛷䠈ᅗ 2 䛾㘓䝥䝻䝖䝁䝹䛻䛚 䛔䛶䠈⿕㦂⪅䛿⣧㡢䛜㬆䜚⤊䜟䛳䛯┤ᚋ䛻㉳䜢㛤ጞ䛧䛶䛔䜛 䛸௬ᐃ䛧䠈 1 ༢ㄒ䛾㉳㛫䜢 400ms 䛸⪃䛘䠈 0-400ms( ⣧㡢┤ ᚋ :0ms) 䜢ゎᯒ༊㛫䛸䛩䜛䠊 3.2 ⠇䛷ㄝ᫂䛧䛯 6 䛴䛾≉ᚩ㔞䛩䜉 䛶䜢⏝䛔䛯䛯䜑䠈ධຊḟඖᩘ䛿䠈 ( ⥺䝇䝨䜽䝖䝹௨እ䛾 5 䛴䛾≉ ᚩ㔞㽢 21ch 䠇⥺䝇䝨䜽䝖䝹 25 ḟඖ ) 㽢 2( ᖹᆒ䛸ᶆ‽೫ᕪ ) 䛾 260 ḟඖ䛷䛒䜛䠊 10 ྡ䛾⿕㦂⪅䛾ᖹᆒṇゎ⋡䜢ᅗ 6 䛾䛂 0- 400ms ༊㛫䛃䛻♧䛩䠊ᅗ 6 䜘䜚䠈ṇゎ⋡䛿 20% 䜋䛹䛷䛒䜚䠈ㄆ㆑ 䛷䛝䛶䛔䛺䛔䛣䛸䛜䜟䛛䜛䠊 ṇゎ⋡䛜ప䛔ཎᅉ䛾୍䛴䛸䛧䛶䠈ṇ☜䛺㉳༊㛫䛜≉ᐃ䛷 䛝䛶䛔䛺䛔Ⅼ䛜ᣲ䛢䜙䜛䠊䛭䛣䛷䠈㉳⬻Ἴ䛸ྠ䛨䝥䝻䝖䝁䝹 䛷㘓䛧䛯Ⓨヰ⬻Ἴ䛻╔┠䛧䛯䠊ྠ䛨䝥䝻䝖䝁䝹䛷㘓䛧䛶 䛔䜛䛣䛸䛛䜙䠈Ⓨヰ䛸㉳䛾㛤ጞ้䜔⥅⥆㛫䛿ᴫ䛽୍⮴䛩 䜛䛸௬ᐃ䛧䛯䠊䛭䛧䛶Ⓨヰ㛫䜢䜒䛸䛻ゎᯒ༊㛫䜢Ỵᐃ䛩䜜䜀䠈 ㉳༊㛫䛷䛾ㄆ㆑ᐇ㦂䛜⾜䛺䛘䜛䛿䛪䛷䛒䜛䠊௨ୖ䛾䛣䛸䛛䜙䠈 Ⓨヰ⬻Ἴ䜢㘓䛧䛯㝿䛻㘓㡢䛧䛯㡢ኌ䝕䞊䝍䛛䜙ྛ⿕㦂⪅ 䛾ᩘᏐ䛤䛸䛾Ⓨヰ㛫䜢⟬ฟ䛩䜛䠊 ⿕㦂⪅䛤䛸䛾Ⓨヰ㛤ጞ㛫䛾ᖹᆒ䜢ぢ䛶䜏䜛䛸䠈䛹䛾⿕㦂⪅ 䜒 250ms ௨㝆䛻Ⓨヰ䜢㛤ጞ䛧䛶䛚䜚䠈⣧㡢䛾㬆䜚⤊䜟䜚┤ᚋ䛻 Ⓨヰ䜢㛤ጞ䛧䛶䛔䜛⿕㦂⪅䛿䛔䛺䛛䛳䛯䠊䜎䛯䠈⿕㦂⪅䛻䜘䛳 䛶㛤ጞ㛫䛿␗䛺䛳䛶䛔䛯䠊䛥䜙䛻䠈ྠ䛨ᩘᏐ䛻䛚䛡䜛⿕㦂⪅ 䛤䛸䛾Ⓨヰ⥅⥆㛫䛾ᖹᆒ䜢ぢ䛶䜏䜛䛸䠈䛣䛱䜙䜒⿕㦂⪅䛻䜘䛳 䛶␗䛺䜛䛣䛸䛜䜟䛛䛳䛯䠊䛣䛾⤖ᯝ䛛䜙䠈ゎᯒ༊㛫䛸䛧䛶䛔䛯 0- 400ms 䛿ᐇ㝿䛾㉳༊㛫䛸䛝䛟␗䛺䛳䛶䛔䜛ྍ⬟ᛶ䛜㧗䛔䠊 䜘䛳䛶䠈㉳䛾ゎᯒ༊㛫䜢ྛ⿕㦂⪅䛾༢ㄒ䛤䛸䛾Ⓨヰ㛤ጞ 㛫䛸⤊㛫䜢䜒䛸䛻ኚ᭦䛧䠈ᨵ䜑䛶㡢ኌ㉳༢ㄒㄆ㆑ᐇ㦂 䜢⾜䛖䠊
本文档的范围和目的噪声和音景计划2023-2028是威尔士关于声景的国家战略,这意味着在上下文中,一个人或人所感知或经历和/或理解的声音环境。威尔士人民可能听到的所有形式的空中声音都被认为是本文件的范围。并非所有控制威尔士空降噪声的政策杠杆都被放弃了。例如,军事活动,机场行动,工作场所噪音的监管,娱乐许可和产品安全标准是对英国政府保留的事项。但是,在军事活动和机场的耳罩中的主席和建设是一个权力下放的问题,围绕娱乐场所,卫生服务的运作(可以要求治疗患有职业或娱乐听力损害的患者)以及向公众提供健康建议的患者。我们尚未确定任何形式的机载噪声,这些噪音是为了影响下放的公共机构在影响结果中没有任何作用。尽管不受声景的技术定义的涵盖,但威尔士政府认为机载声音对陆地野生动植物,宠物和养殖动物的影响在本文件的范围内。但是,重点仅放在空气环境上。水下声音落在本文档范围之外。此策略必须包括评估和降低噪声污染水平的政策。在2023年12月4日之前。本文件旨在满足这两个法律要求。2023年3月20日介绍给塞内德(Seendd),环境(空气质量和音景)(威尔士)法案1将要求威尔士部长准备并发布一项策略,其中包含对威尔士音景评估和管理的政策。如果威尔士部长在法案获得皇家同意之前制定了这样的战略(希望在2024年),则该策略将被作为该法案根据该法案获得皇家同意的国家景观的国家战略。2006年《环境噪音(威尔士)条例》要求威尔士部长必须审查,如有必要,在我们以前的合并行动计划2中包含的现有环境噪声行动计划2,在采用后五年不得晚,即
摘要 我们提出 AI-Lyricist:一个根据所需词汇和 MIDI 文件作为输入来生成新颖而有意义的歌词的系统。这项任务涉及多项挑战,包括自动识别旋律并从多声道音乐中提取音节模板、生成与输入音乐风格和音节对齐相匹配的创意歌词以及满足词汇约束。为了应对这些挑战,我们提出了一个自动歌词生成系统,该系统由四个模块组成:(1)音乐结构分析器,用于从给定的 MIDI 文件中获取音乐结构和音节模板,利用预期音节数的概念更好地识别旋律;(2)基于 SeqGAN 的歌词生成器,通过策略梯度进行多对抗训练优化,使用双鉴别器进行文本质量和音节对齐;(3)深度耦合的音乐歌词嵌入模型,将音乐和歌词投射到联合空间中,以便公平比较旋律和歌词约束;以及一个名为 (4) Polisher 的模块,通过对生成器应用掩码并替换要学习的单词来满足词汇约束。我们在超过 7,000 个音乐歌词对的数据集上训练了我们的模型,并通过主题、情感和流派方面的手动注释标签进行了增强。客观和主观评价均表明 AI-Lyricist 在所提出的任务上的表现优于最先进的技术。
《减弱音爆:异形音爆演示器和安静超音速飞行的探索》是对 2009 年初我有幸撰写的案例研究“减弱音爆:NASA 50 年的研究”的后续。这项相对较短的调查发表在《NASA 对航空学的贡献》第一卷(NASA SP-2010-570)中。尽管我之前熟悉航空史,但最初,我还是犹豫不决,是否要接触这个似乎如此深奥且技术性极强的话题。值得庆幸的是,一些有关过去超音速计划的信息性参考资料已经可以帮助我入门,最著名的是埃里克·M·康威的《高速梦想:NASA 和超音速运输的技术政治,1945-1999》,这本书在“减弱音爆”和随后的前四章中被频繁引用。中断两年之后,我在 2011 年 3 月恢复了音爆研究,并撰写了这本新书。我非常感谢著名航空历史学家理查德·P·哈利恩博士给我的机会,让他就这个迷人的主题进行写作。哈利恩博士是《美国国家航空航天局对航空的贡献》和新美国国家航空航天局 (NASA) 丛书的编辑,本书是该丛书的一部分。在扩充、更新并希望改进我之前的叙述的同时,本书的主要焦点是诺斯罗普·格鲁曼公司 (NGC) 以及一个由政府和行业合作伙伴组成的多元化团队所取得的突破,他们证明了飞机可以设计成显著降低音爆强度。我在 2008 年 12 月和 2011 年 4 月访问加利福尼亚州爱德华兹的德莱顿飞行研究中心 (DFRC) 期间得到了帮助,并通过电话和电子邮件与 DFRC 人员进行了交流,这对我的一手资料研究大有裨益。图书管理员 Karl A. Bender 博士向我介绍了 NASA 一流的科学和技术信息资源,并在 Freddy Lockarno 的帮助下,帮助我收集了大量重要文件。航空历史学家 Peter W. Merlin 在 Dryden 的档案馆藏中为我找到了其他资料来源。Dryden 的主要音爆研究者 Edward A. Haering 提供了宝贵的原始资料,回答了问题,并审阅了涉及他项目的章节。同事工程师 Timothy R. Moes 和试飞员 James W. Smolka 和 Dana D. Purifoy 帮助我提供了额外的
图4显示了使用20倍交叉验证估计每个受试者的回忆间隔的结果。在图 4 中,横轴是时间,纵轴是来自 5 个受试者的 200 个样本(总共 1000 个样本)的准确率。红框内是语音回忆部分。前文研究 [2] 中的方法(图 4 中的蓝线)的准确率在语音回忆片段之间下降到 0.2,而本文提出的方法(图 4 中的橙线)则达到了 0.8 的稳定准确率。 从这些结果可以看出,可以说所提出的方法对于估计回忆间隔是有效的。然而,当我们观察所提出的方法在语音回忆部分之外的准确度时,我们发现与以前的研究相比,该方法将语音回忆部分之外的部分估计为回忆率的情况更为常见。这被认为是由于大脑中噪音的影响。因此,我们旨在通过将增加的 10 个样本应用于所提出的方法来减少这种噪音。结果就是图4中的绿线。在保持回忆部分的准确度的同时,非回忆部分的准确度得到了提高。基于这些结果,我们研究了所提出方法的最佳添加次数。结果如图5所示。图 5 显示了所有受试者对每个加法数字的准确率。蓝线表示整个时间内的平均准确率,橙线表示回忆期间的最大准确率。横轴是添加的样本数量,纵轴是准确率。通过添加 sigma,回忆部分的准确率得到了提高,达到了约 90%。另外,10 次添加等于 1 个样本。
分配访问权限后,访问权限持有者将有权根据《国家电力规则》(NER)第 5 章协商接入访问权限网络的连接,但须遵守 EII 法规的条款修改;4 例如,作为本轮招标流程的一部分,将提供与连接查询中包含的信息等同的连接相关信息(代替 NER 连接查询)。分配访问权限后,基础设施规划人员将通知 Transgrid(访问权限网络的注册网络服务提供商)成功的访问权限持有者。然后,Transgrid 将被要求向访问权限持有者提供与 NER 下的连接查询响应等同的信息,以使访问权限持有者能够提出连接申请(有关更多信息,请参阅第 4 节)。
简介:预测肿瘤学、种系技术和自适应无缝试验是治疗致命癌症的有希望的进展。然而,昂贵的研究、监管障碍和因 COVID-19 大流行而加剧的结构性不平等阻碍了这些疗法的获得。方法:为了满足对快速和更公平地获得致命癌症突破性疗法的全面战略的需求,我们与加拿大、欧洲和美国的 70 名肿瘤学、临床试验、法律和监管流程、患者权益、伦理、药物开发和卫生政策专家进行了一项改良的多轮德尔菲研究。半结构化民族志访谈(n = 33)用于确定问题和解决方案,参与者随后在调查(n = 47)中对其进行了评估。调查和访谈数据被共同分析,以完善面对面圆桌会议的主题,26 名参与者在会上审议并起草了系统变革建议。结果:参与者强调了患者获取新型疗法的主要问题,包括完成资格要求或参与试验所需的时间、成本和交通负担。只有 12% 的受访者对当前的研究系统表示满意,其中“患者获取试验”和“研究批准延迟”是最受关注的问题。结论:专家一致认为,应开发以公平为中心的精准肿瘤学沟通模式,以改善患者获取自适应无缝试验、资格改革和即时试验激活的机会。国际倡导团体是动员患者信任的关键因素,应参与研究和治疗批准的每个阶段。我们的结果还表明,政府可以通过让研究人员和付款人参与生态系统方法,以应对危及生命的癌症患者面临的独特临床、结构、时间和风险收益状况,从而促进更好、更快地获得救命的疗法。