人体并不是一个封闭的系统——无论飞行员多么希望如此。他们也不能在以音速飞行的八小时飞行中途停下来进站。因此,排尿可能是个大问题。典型的解决方法是限制飞行前摄入的液体(“战术脱水”),或将尿液排入特制的“排尿袋”中。这两种选择同样危险,而且非常危险。仅仅 3% 的脱水就会导致飞行性能下降 57%,手眼协调能力下降、视力受损、空间定向障碍和 G 力耐受力下降。除了直接后果之外,习惯性脱水会导致肾结石、慢性肾病和终生膀胱功能障碍。但使用排尿袋可不只是麻烦这么简单。到 2001 年,空军已将其使用与 9 起 A 级事故联系起来,这些事故导致人员伤亡或损失超过 100 万美元
临界流量限制是上述两个问题中更为重要的一个。临界流量是一种由缩流处气体速度增加引起的阻塞流动状态。当缩流处的速度达到音速时,通过降低下游压力而额外增加的 ∆ P 不会增加流量。因此,在达到临界流动条件后(无论是手套阀的压降/入口压力比约为 0.5,还是高回收率阀的压降/入口压力比低得多),上述方程变得完全无用。如果应用,C v 方程给出的指示容量会比实际存在的容量高得多。对于在低压降比下达到临界流量的高回收率阀(如图 8 所示),阀门的临界流量容量可能会被高估多达 300%。
想象一下导弹或任何飞行速度超过音速的东西;这已经是一种几乎不可思议的速度。到 2040 年,高超音速武器将配备飞行速度高达音速 20 倍的核弹药(Endowment,2020)。这些速度将确保对敌人造成突然袭击。如果证明可靠,这些高超音速武器将有助于遏制来自任何国家的威胁。开发已经开始。高超音速武器将配置三种版本:制导弹道导弹、高超音速巡航导弹和助推滑翔导弹(Endowment,2020)。这将使美国能够在短短几分钟内在世界任何地方使用常规武器或核武器。然而,我们保护军队的需要并不止于爆炸弹药。下一代飞机的持续发展也将有助于美国在全球保持空中优势。
“这是我们这一代人的斯普特尼克时刻……几周后,我将向国会提交一份预算,帮助我们实现这一目标。我们将投资于生物医学研究、信息技术,尤其是清洁能源技术——这项投资将加强我们的安全,保护我们的地球,并为我们的人民创造无数新的就业机会。”美国总统巴拉克·奥巴马,国情咨文,2011 年 1 月 25 日 “现在,另一种前景广阔的石油替代品是可再生生物燃料 - 不仅仅是乙醇,还有用柳枝稷、木屑和生物质等制成的生物燃料……就在上周,我们的空军——我们自己的空军——使用了一种先进的生物燃料混合物让一架猛禽 22——一架比音速还快的 F-22 猛禽战斗机飞行……事实上,空军的目标是到 2016 年从替代来源获得一半的国内喷气燃料。我指示海军、能源部和农业部与私营部门合作,创造先进的生物燃料,不仅可以为战斗机提供动力,还可以为卡车和商用客机提供动力。”总统在美国能源安全会议上的讲话,乔治城大学,2011 年 3 月 30 日
AD 适航指令 A/M 飞机 ADF 自动测向 [设备] ADS 空中数据系统 AHRS 姿态航向参考系统 AOA 攻角 AOS 侧滑角 AP 自动驾驶仪 APP 进近 ATC 空中交通管制 ATCAS 空中交通管制自动化系统 CAA 民航局 CG 重心 C L 升力系数 DAFCS 数字式自动飞行控制系统 DME 测距设备 EFIS 电子飞行仪表系统 FAA 联邦航空管理局(美国) FDR 飞行数据记录器 FL 飞行高度 FOD 外来物体损坏 FTB 飞行试验台 GNC 引导导航控制 GPS 全球定位系统 IAS 指示空速 ICAO 国际民用航空组织 M 马赫数(= 边界外的流速与当地音速之比,在海平面大约为 340 米/秒) MAC 平均气动弦 (M)MEL(主)最低设备清单 METAR 气象报告 MFC 多功能计算机 NM 海里(= 1.852 米) OAT室外空气温度(°C、°K、°F 外部空气)PF 飞行员飞行
导弹及其技术控制制度 (MTCR) 是各国寻求防止导弹和无人驾驶飞行器 (UAV) 扩散的主要多边出口控制制度。近年来,高超音速导弹在 MTCR 和军备控制讨论中受到越来越多的关注。高超音速导弹通常结合了以 5 马赫(即五倍音速)及以上速度进行长时间飞行的能力,以及能够以可变飞行剖面的方式进行机动的能力。高超音速导弹系统主要有两种类型:高超音速助推滑翔系统和高超音速巡航导弹 (HCM)。高超音速助推滑翔系统通常由弹道火箭助推器和高超音速滑翔飞行器 (HGV) 组成。HCM 是通常使用吸气式超音速冲压发动机的巡航导弹。尽管这两种类型涵盖了目前正在开发的大多数高超音速导弹系统,但可能存在一系列结合不同推进系统、弹道和滑翔能力的高超音速导弹设计。高超音速导弹既被设想作为能够确保二次打击能力的核武器运载系统,又被设想作为常规精确打击或快速反应武器。
经颅超声疗法越来越多地用于非侵入性脑疾病治疗。然而,常规数值波求机的计算量过于昂贵,无法在治疗过程中在线使用,以预测经过头骨的声学字段(例如,考虑主题特定的剂量和靶向变化)。作为实时预测的一步,在当前工作中,使用完全学习的优化器开发了2D中异质Helmholtz方程的快速迭代求解器。轻型网络体系结构基于一个修改的UNET,其中包括一个学识渊博的隐藏状态。使用基于物理的损失功能和一组理想化的音速分布对网络进行训练(完全无监督的训练(不需要真正的解决方案)。学习的优化器在测试集上表现出了出色的性能,并且能够在训练示例之外良好地概括,包括到更大的计算域,以及更复杂的源和声速分布,例如,从X射线计算的颅骨图像中得出的那些。
今天能作证是我的荣幸。感谢你们给我这个机会。我是卡内基国际和平基金会的高级研究员兼核政策项目联席主任。我拥有理论物理学博士学位,过去五年来,我一直在从技术和政策角度研究美国、中国和俄罗斯的高超音速武器的发展。我想重点谈谈从飞行试验中可以了解到中国高超音速助推滑翔武器计划的情况,以及该计划对美国及其盟友安全的影响。高超音速武器技术“高超音速”通常定义为至少五倍音速。有三种基本方法可以以这样的速度在远距离准确地运送有效载荷:高超音速巡航导弹、末端制导弹道导弹和助推滑翔武器。我不会深入讨论高超音速巡航导弹,但我会指出,包括马克·斯托克斯和我以前的卡内基同事罗拉·萨尔曼在内的许多专家已经发现了大量证据表明中国和美国一样正在对该领域进行广泛研究。有报道称中国已经试飞了一种超燃冲压发动机——这是持续高超音速飞行所需的推进系统——尽管我无法评估这些报道的真实性。话虽如此,如果这些报道不正确,也不足为奇。
使用超声检查方法用于异常和锂离子电池中的缺陷检测一直是研究人员近年来的一个令人兴奋的主题。用于电池检查的超声波技术主要集中于监视电池状态,识别内部缺陷,并检测诸如锂电池,气体产生和扩展,润湿的一致性以及热失控等问题。该技术通常采用脉搏回波方法,使用触点或沉浸式设置在电池中进行内部缺陷检测。随着超声技术的不断发展,预计将在锂电池检查的各个方面应用越来越多的超声技术。右审讯频率的使用取决于检查的目标。例如,当电池内部有大量阻塞信号的大气体时,使用低频检查。渗透量可能表明细胞的气体程度如何。通过传输信号用于识别与电池内部缺陷相关的音速或穿透量。另一方面,反射信号主要用于定位内部缺陷。当需要单向穿透(例如厚棱镜细胞)并在传感器和细胞之间具有距离时,浸入设置很有用。接触测试通常也用于SOC或SOH估计。
火箭发动机的再生冷却结构承受着极大的载荷。载荷是由热燃烧气体(对于 CH4/OX 约为 3500 K)和冷冷却通道流(对于 LCH4 约为 100 K)相互作用引起的,这导致结构中出现大的温度梯度和高温(对于铜合金最高可达 1000 K 左右),同时两种流体之间的压差也很大。本研究旨在更好地了解三个主要组成部分的物理行为:结构、热气体和冷却剂流以及它们之间的相互作用,特别是结构的寿命。自 1970 年代以来,已经进行了一些燃烧室结构的寿命实验。Quentmeyer 研究了 GH LOX 2/ 燃烧室的 21 个圆柱形 LH 2 冷却测试段的低周热疲劳 [1]。在微型燃烧室内安装了一个水冷中心体,以减少燃料消耗并形成火箭发动机的燃烧、音速喉部和膨胀区域。研究了三种不同的材料。热电偶被放置在冷却通道肋条和冷却剂的入口和出口歧管中。测试是在 41.4 bar 的腔室压力和 6.0 的混合比(氧气与燃料之比)下进行的。喉部区域的热通量达到 54 MW/m 2 。循环重复测试,直到通过感测冷却剂通道泄漏检测到燃烧室故障。没有定量研究热气壁的变形。单个冷却剂质量