4。†这些作者为这项工作做出了同样的贡献。pt开发了14个研究的概念框架。pt,PK和HR设计了实验。PK和PWD进行了15个实验。PK和MG分析了数据。所有作者都为16个结果和写作的解释做出了贡献。17
。CC-BY-NC-ND 4.0 国际许可证 它是永久可用的。 是作者/资助者,已授予 medRxiv 许可以显示预印本(未经同行评审认证)预印本 此版本的版权所有者于 2020 年 1 月 24 日发布。;https://doi.org/10.1101/2020.01.18.20018036 doi: medRxiv preprint
长期以来,人们一直对意识的起源及神经关联存在争议。研究表明,前额叶和后顶叶皮质的感觉区整体工作空间与大脑的意识活动高度相关(Giacino et al.,2014)。后部皮质包含一个后部热区,用于产生视觉、听觉、触觉等多种意识体验(Boly et al.,2017;Koch,2018),这为后部脑区与人类意识相关提供了直接证据。前额叶严重损伤的患者仍然保留有唤醒和意识,这表明前额叶皮质应排除为意识依赖性皮质(Koch,2018)。但也有研究者认为,大多数与意识无关的额叶结构受损,并不会导致意识丧失;额叶中的关键结构主导着人类的意识(Koenigs 等人,2007 年;Koch 等人,2016 年)。意识障碍 (DOC) 是由于调节觉醒和意识的神经系统部分受损或功能障碍导致的意识状态改变(Schiffi 和 Plum,2000 年;Giacino 等人,2014 年)。DOC 患者通常因中风、缺氧等原因遭受严重的脑损伤(Gosseries 等人,2011b、2014 年)。此类患者可能处于植物人状态 (VS) 或微意识状态 (MCS)。这两种状态都具有较高的觉醒水平;MCS 涉及可重复的非反射性行为反应,而 VS [也称为无反应性觉醒综合征 (UWS)] 仅涉及对外部刺激的反射性行为反应。 VS/UWS 是一种临床综合征,描述患者在睁眼清醒状态下无法表现出自主运动反应(Laureys 等人,2010)。MCS 患者无法与周围环境交流;然而,他们表现出波动的意志行为残余(Laureys 等人,2004)。此外,根据他们对命令的响应能力、有意交流等,MCS 可分为 MCS + 和 MCS-(Chennu 等人,2017 年;Rizkallah 等人,2019 年)。此外,Thibaut 等人(2021 年)将大脑活动与 MCS 相似的 VS/UWS 患者定义为 MCS ∗。额叶是言语功能和运动行为的控制中心;它还被认为与更高级的认知有关,包括记忆和执行力(Chayer and Freedman,2001)。全局工作空间理论假设意识通过信息处理产生,信息处理通过以额叶和顶叶为中心的两个神经元网络将输入信息传播到整个大脑(Koch,2018)。神经影像学研究表明,意识水平的提高伴随着顶叶联想皮层代谢率的变化(Laureys et al.,1999 ) 以及与额叶相关的神经连接增加 ( Jang and Lee , 2015 )。脑电图 (EEG) 是一种非侵入性、高度兼容且便携的测量方法,可以测量
恢复行走是卒中后的主要康复目标 (1),但这种恢复往往变化很大 (2),恢复完全社区行走功能的个体比例有限 (3)。中风是对大脑的直接损伤,但在康复过程中很少评估大脑的功能特征。由于行走恢复的变化,测量和记录大脑特征有助于指导康复治疗的处方 (4)。功能性近红外光谱 (fNIRS) 是一种越来越流行的测量大脑活动的工具。它的便携性、对运动伪影的敏感度相对较低以及低成本使其成为测量行走过程中大脑的有吸引力的工具 (5)。fNIRS 使用成对的近红外光发射器和检测器光极,两者相距 3–4 厘米。这个分离距离允许记录 1.5–2 厘米的深度(即到达大脑皮层的皮层)和与脑电图 (EEG) 相比相对较高的空间分辨率。这些光电极可以放置在头皮的多个区域,以估计该区域氧合血红蛋白 (HbO) 和脱氧血红蛋白 (HbR) 浓度的变化。根据神经血管耦合理论,血红蛋白浓度的这些变化(HbO 增加和 HbR 降低)表明大脑皮层活动增加(6、7)。健康成年人从站立开始行走时,HbO 通常立即下降(表明氧气消耗),然后上升(表明氧气补充/增加氧气以满足神经元需求),并在行走开始后 5-10 秒达到峰值。随着行走的继续,HbO 的初始增加会下降,有时甚至在行走停止之前就达到基线或低于基线站立水平(8)。HbR 的反应通常相反,变化幅度相对较小。研究不同行走阶段(例如加速或稳态行走)的激活程度对于评估不同行走阶段的相对皮质需求非常重要。先前的研究表明,中风人群的血流动力学反应曲线不同(9)。然而,中风人群的血流动力学曲线有限,需要对中风后行走过程中的曲线进行更详细的描述。迄今为止,在中风中,大脑活动主要在
参考文献1。Boyd AS,KH的Neldner。 计划行。 J Acad Dermatol 1991; 25:593-6 [PMID:1791218]。 2。 Hamour AF,气候H,Exchange A. 地衣口服。 cmaj 2020; 192:船。 [PMID:32753462]。 3。 PC,Ramay FH,Steinweg SA,MS。计划线:耐心存在的五种变体。 JAAD案例代表。 2019; 55-7。 [PMID:31245519]。 4。 Boch K,Langan EA,Cridin K和Al。 计划行。 med(毛地)。 2021; 8:737813。 [PMID:34790675]。 5。 Abduelmula A,Big A,Mutti A,Yeung Kcy,Yeung J. 在Planus中使用Janus抑制剂:基于明显的评论。 J 2023:27:271-6。 [PMID:36815857] 6。 CM谣言,MH Patel,KJ Severson和Al。 中的ruxolinibs J投资Dermatol 2022; 142:2109-16 e4。 [PMID:35131254]。 7。 b,Bhullar P,Brumfiel C. 34004局部鲁唑啉尼在皮肤地衣皮肤皮肤上阻塞了干扰素信号传导。 J Dermatol Acad 2022; 87:AB121。 [doi:10.1016/j.jaad.2022.06.517]。 8。 Shawky Am,Almalki FA,Abdalla AN,Abdelazeem AH,Gouda AM。 经批准的JAK抑制剂的补充。 Parmaces 2022; 14:5。Boyd AS,KH的Neldner。计划行。J Acad Dermatol1991; 25:593-6[PMID:1791218]。2。Hamour AF,气候H,Exchange A.地衣口服。cmaj2020; 192:船。[PMID:32753462]。3。PC,Ramay FH,Steinweg SA,MS。计划线:耐心存在的五种变体。JAAD案例代表。2019; 55-7。[PMID:31245519]。4。Boch K,Langan EA,Cridin K和Al。 计划行。 med(毛地)。 2021; 8:737813。 [PMID:34790675]。 5。 Abduelmula A,Big A,Mutti A,Yeung Kcy,Yeung J. 在Planus中使用Janus抑制剂:基于明显的评论。 J 2023:27:271-6。 [PMID:36815857] 6。 CM谣言,MH Patel,KJ Severson和Al。 中的ruxolinibs J投资Dermatol 2022; 142:2109-16 e4。 [PMID:35131254]。 7。 b,Bhullar P,Brumfiel C. 34004局部鲁唑啉尼在皮肤地衣皮肤皮肤上阻塞了干扰素信号传导。 J Dermatol Acad 2022; 87:AB121。 [doi:10.1016/j.jaad.2022.06.517]。 8。 Shawky Am,Almalki FA,Abdalla AN,Abdelazeem AH,Gouda AM。 经批准的JAK抑制剂的补充。 Parmaces 2022; 14:5。Boch K,Langan EA,Cridin K和Al。计划行。med(毛地)。2021; 8:737813。[PMID:34790675]。5。Abduelmula A,Big A,Mutti A,Yeung Kcy,Yeung J.在Planus中使用Janus抑制剂:基于明显的评论。J2023:27:271-6。[PMID:36815857]6。CM谣言,MH Patel,KJ Severson和Al。 中的ruxolinibs J投资Dermatol 2022; 142:2109-16 e4。 [PMID:35131254]。 7。 b,Bhullar P,Brumfiel C. 34004局部鲁唑啉尼在皮肤地衣皮肤皮肤上阻塞了干扰素信号传导。 J Dermatol Acad 2022; 87:AB121。 [doi:10.1016/j.jaad.2022.06.517]。 8。 Shawky Am,Almalki FA,Abdalla AN,Abdelazeem AH,Gouda AM。 经批准的JAK抑制剂的补充。 Parmaces 2022; 14:5。CM谣言,MH Patel,KJ Severson和Al。J投资Dermatol2022; 142:2109-16 e4。[PMID:35131254]。7。b,Bhullar P,Brumfiel C. 34004局部鲁唑啉尼在皮肤地衣皮肤皮肤上阻塞了干扰素信号传导。J Dermatol Acad2022; 87:AB121。[doi:10.1016/j.jaad.2022.06.517]。8。Shawky Am,Almalki FA,Abdalla AN,Abdelazeem AH,Gouda AM。经批准的JAK抑制剂的补充。Parmaces2022; 14:5。[PMID:35631587]。
纵裂 - 将两个大脑半球分开 中央沟 - 分隔额叶和顶叶 侧裂 - 将额叶、顶叶与颞叶分开 顶枕沟 - 位于内侧表面,将枕叶与顶叶/颞叶分开 距状裂 - 位于枕叶内侧表面 中央前回 - 中央沟前部 - 初级运动区 中央后回 - 中央沟后部 - 初级体感区
顶叶皮层中已发现几个感觉运动整合区域,这些区域似乎围绕运动效应器(例如眼睛、手)组织。我们研究了人类声道是否存在感觉运动整合区域。说话需要大量的感觉运动整合,其他能力(如发声音乐技能)也需要。最近的研究发现,颞顶叶后上部区域 Spt 区既具有感觉(听觉)又具有运动反应特性(针对语音和音调刺激)。熟练的钢琴家在听新旋律时,要么偷偷地哼唱旋律(声道效应器),要么偷偷地在钢琴上弹奏旋律(手动效应器),这时用 fMRI 测量了他们的大脑活动。与偷偷地哼唱相比,偷偷地弹奏条件下 Spt 区域的活动明显更高。前 IPS(aIPS)中的一个区域显示出相反的模式,表明它参与了感觉手动转换。这一发现表明,Spt 区是声道手势的感觉运动整合区域。© 2007 Elsevier Ltd. 保留所有权利。
个人如何从正面和负面的奖励反馈中学习并据此做出决策,可以通过强化学习的计算模型形式化(Sutton and Barto 1998)。RL 模型的核心是奖励预测误差 (RPE),它反映了已实现奖励和预期奖励之间的差异。从神经上讲,预测误差由中脑多巴胺的阶段性释放发出信号(Hollerman and Schultz 1998,Schultz 2013),同时纹状体和其他大脑区域的神经活动也相应出现(Pine, Sadeh et al. 2018)。人类功能性神经影像学研究报告了中脑、纹状体和几个皮质区域中 RPE 的相关性(O'Doherty, Dayan et al. 2004,D'Ardenne, McClure et al. 2008,Daw, Gershman et al. 2011,Deserno, Huys et al. 2015)。 RL 神经行为相关性的个体差异确实与人类多种多巴胺测量方法有关,包括药理学操作(Pessiglione、Seymour 等人 2006 年、Westbrook、van den Bosch 等人 2020 年、Deserno、Moran 等人 2021 年)、神经化学正电子发射断层扫描 (PET)(Deserno、Huys 等人 2015 年、Westbrook、van den Bosch 等人 2020 年、Calabro、Montez 等人 2023 年)和特定基因型(Frank、Moustafa 等人 2007 年、Dreher、Kohn 等人 2009 年)。
基于奖励的学习和决策是了解注意力缺陷多动障碍(ADHD)的症状的主要候选人。但是,只有有限的证据可用于多动症中所见变化的神经计算基础。这涉及动态变化的环境中的灵活行为适应,这对于患有多动症的人来说是具有挑战性的。先前的一项研究表明,青少年多动症的选择转换升高,伴随着内侧前额叶皮层中的学习信号。在这里,我们使用概率逆转学习实验(fMRI)研究了与年龄和性别匹配的对照(n = 17)相比,我们研究了ADHD(n = 17)的年轻人(n = 17)。任务需要持续学习,以指导灵活的行为适应变化的奖励意外事件。为了解开行为数据的神经计算基础,我们使用了加固学习(RL)模型,该模型为fMRI数据的分析提供了信息。ADHD患者的表现比对照组较差,尤其是在逆转之前的试验中,即奖励调解稳定时。这种模式是由“嘈杂”选择切换产生的,无论先前的反馈如何。RL建模显示,ADHD患者的负反馈降低了增强敏感性和增强的学习率。在神经水平上,这反映在ADHD中左后顶叶皮层中选择概率的降低表示。由于样本量相对较小,这些神经计算发现仍然是初步的。建模显示了对未选择选项的学习的边缘降低,这与学习信号的边缘减少相似,该学习信号纳入了左侧腹侧纹状体中的未选择选项。在一起,我们表明,多动症中的灵活行为受损是由于选择过度切换(“超灵活性”),这取决于学习环境,这可能是有害的或有益的。在计算上,这是由于对加强的敏感性而引起的,我们检测到了注意力控制网络中的神经相关性,特别是在顶叶皮层中。