一般说明 A. 本附录不能单独使用,必须与基本单元化程序图 19-48-4116-20PA1002 结合使用。为生产经批准的单元负载,基本图中规定的所有相关程序、规格和标准均适用于本附录中所述的程序。本附录中规定了基本程序的任何例外情况。 B. 托盘单元的尺寸、立方体和重量将根据箱子的实际尺寸和要组合的特定物品的重量而略有不同。C. 在将箱子放在托盘上之前,必须先将负载带预先放置在托盘甲板上。在使用绑扎带之前,必须先拉紧并密封负载带。D. 安装每条绑扎带,使其穿过托盘的顶板下方。请注意,绑扎带的位置如图所示,与端门中心垂直件对齐。只有在负载带拉紧并密封后才能使用系紧带。E. 以下 AMC 图纸适用于本附录所涵盖物品的卸载和存储。车载 - - - - 19-48-4115-5PA1002 卡车装载 - - - 19-48-4117-11PA1003 存储 - - - - - 19-48-4118-1-2-3-4-14- 22PA1002 端开口 ISO 集装箱 - - - - 19-48-4153-15PA1002 米尔万 - - - - - - 19-48-4166-15PA1003 侧开口 ISO 集装箱 - - - - 19-48-4267-15PA1009 F. 如果本附录所涵盖的物品在本附录发布前已组合,则无需单独重新组合箱子以符合本附录。G. 本文所述的单元化程序也可用于当烟罐的国别库存编号 (NSN) 与第 2 页所示不同时对烟罐进行单元化,前提是包装盒与本文所述一致。其他物品的爆炸物分类可能与所示不同。 H. 左侧细节中所示的 1A 型托盘在用于本附录所涵盖的物品的单元化时,无需具有军用规范 MIL-DTL-15011 中规定的倒角或带槽。J. 所有垫料均应按照基本程序中的一般说明“AA”进行防腐处理,并按照基本程序中的一般说明“JJ”进行热处理。K. 有关 ASTM-D6251 箱的详细信息,请参阅 DEVCOM SPI P36-1-300-20。
所有规范要求。所有卧室窗户以及每个地下室地下层至少一扇窗户均应满足出口要求:窗台高度不超过 44 英寸,净净开放面积最小为 5.7 平方英尺,高度最小为 24 英寸,宽度最小为 20 英寸(最小值不得合并)。窗台高度不超过 44 英寸的窗户,其面积可为 5 平方英尺。可居住房间的最小窗户尺寸为地板面积的 8%,其中一半可打开。为所需出口窗户提供服务的窗井的尺寸应符合窗户的最小要求:1) 深度大于 44 英寸;提供永久台阶或梯子横档。2) 从地基到窗井前部有 36 英寸的水平间隙。 3) 任何突出部分(即凸窗、悬臂等)与上述水平间隙之间均需有 24 英寸的垂直间隙。4) 保护窗井的格栅或护栏应易于拆卸或设计成不妨碍出口。所有连接到混凝土或砖石基础的板材和放置在地面上的板应为红木或经过处理的木材。混凝土或砖石墙中的梁袋应大小合适,以便在梁的顶部、侧面和末端留出至少 ½ 英寸的空气空间。可居住房间、厨房、浴室、卫生间和大厅的天花板高度不得低于 7 英尺 -0 英寸。中心间距为 48 英寸或更大的梁与地板之间的最小间隙不得低于 6 英尺 -6 英寸。所有点、梁和横梁负载应通过修边器、柱、螺柱或其他尺寸合适的框架构件转移到地基上。支撑点应为全宽,长度足以支撑施加的负载,但在任何情况下,支撑点的宽度不得小于 1-1/2 英寸(木材)或 3 英寸(混凝土或砖石)。所有托梁在支撑点处都需要实心封堵。墙壁的所有拱腹、吊顶、凹形天花板、通风口周围的开口、管道和风管、底部未完工时与楼梯对齐的地方以及所有竖井和凹槽的地板和天花板水平面都需要防火封堵。镶板墙要求在顶板处和垂直方向每个10 英尺水平。防火封堵应由 2 英寸标称木材、两块厚度为 1 英寸且接缝搭接的木材或一块厚度为
本期特刊的标题为“可再生能源技术的可持续发展进程 II:概述”,介绍了矿产资源领域可持续发展领域的一系列论文,详细介绍了将能源生产转化为可再生能源利用的“无缝”过程。这一研究领域对于实现联合国设定的可持续发展目标 [ 1 , 2 ],以及精益能源生产、传输和消费技术 [ 3 , 4 ] 具有重要意义。可再生能源生产的发展过程本身与化石能源开采的创新发展同步进行 [ 5 ],其中最好的技术也被用于可再生能源生产,例如地热能 [ 6 ] 和潮汐能 [ 7 ] 的生产。低碳经济转型伴随着劳动生产率的提高和工业 4.0(采矿业 4.0 [ 8 ]、石油和天然气 4.0 [ 9 , 10 ])无人技术的传播,伴随着公众对可获取和廉价能源需求的形成,伴随着当地社区与企业以及大学、创新型企业家和政府之间互动的发展(“三重和四重螺旋”)[ 11-13]。考虑到这些,本期特刊的目的是打造一个全球讨论平台,供科学界和对可再生和传统能源生产创新发展问题感兴趣的公众传播可持续发展的先进思想。今天,跨学科研究在可持续发展进程中的作用不容小觑[ 14, 15]。这结合了能源、采矿机械和设备、露天、地下和建筑岩土技术、石油和天然气技术等领域的工作;可再生能源系统的生产和营销经济学;信息和认知技术[16]。这就是《过程》杂志本期特刊收集科学文章的动机。与之前一样,本期特刊也试图让新参与者参与到有关从传统能源向可再生能源转变作为可持续发展关键要素的讨论中。下面,我们对所收录的每一篇文章进行了总结,这些文章均由客座编辑仔细审查后选出,来自致力于从可再生和不可再生能源中提取和生产化石能源的创新技术的出版物。改进矿产资源生产设备以实现从不可再生能源向可再生能源技术的“无缝”过渡的问题在科学文献中得到了广泛关注,例如[17-19]。具体来说,在本期特刊中,D. Szurgacz 的文章专门研究了矿井动力顶板支护中液压执行器的生产率因素,
• 拉索设备系统的运行效率与环境和经济效率 • 拉索台阶爆破和碎裂/背裂控制中的地震效应 • 镐与岩石相互作用时的热行为以及露天采矿机操作参数的优化 • 通过机器振动和粗糙度指数映射分析旋转爆破孔钻机的性能 • 使用马尔可夫链对隧道掘进机进行可靠性建模 • 一种用于脆弱煤矿支护设计的新型岩体评级方法(RMRdyn)。 • 机械化长壁矿井中为防止采煤机过载而对硬砂岩进行可切割性评估(Jhanjhra,ECL)。 • 使用机器学习算法(ANN)对台阶爆破抛掷距离的预测模型, • 估算露天采矿机切割中的产量、镐和柴油消耗以及露天采矿机的本土化。 • 确定顶板岩石的阈值峰值粒子速度,以合理装药炸药,提高煤矿、金属矿和隧道的安全性和生产率 • 增强印度本土金刚石线技术在石材切割中的功能能力。 • 通过全面的列线图进行资产管理,快速评估露天矿工的表现并计划库存。 • 预测坑洞形成的风险、深度和大小,尤其是在浅层煤矿中,以确保安全开采。 • 爆炸压力和基于时间的概念来估计飞石距离,这对于确定矿井中的禁区以确保安全操作至关重要。 • 结合岩石、炸药和爆炸设计参数的模型,用于金属矿的超挖控制。旨在减少因爆炸引起的超挖而导致的矿石稀释。随后还整合了拉力优化。 • 水下钻孔和爆破概念和技术,用于在海洋结构附近进行控制爆破,以完成港口(维沙卡帕特南)的加深和拓宽,以及用于加强贸易的引水渠道。 • 开发了独一无二的圆盘/镐切割测试设施,该设施在 IIT(ISM) 进行设计、制造和测试。 • 虚拟现实矿山模拟器,在 IIT(ISM) 构思、设计和开发了印度唯一的一个。在此基础上创建了全沉浸式采矿方法(地下和露天煤矿开采模式)。