(13 年秋季,14 年春季)该系统允许用户从预先设定的选择列表中选择一种饮料,并使用现有的酒精和其他饮料瓶制作/混合饮料。该系统还具有无线接口,可让客户通过智能手机远程订购饮料。
基质复合材料。该平台与光学显微镜和其他测试结合使用,以收集有关材料在应力下如何表现的信息。当前的微型拉伸平台会导致样品产生弯曲应变,从而破坏测试数据。项目目标是修改平台以减轻这种弯曲应变,从而能够收集准确的数据。为了实现这一目标,进行了广泛的测试以确定弯曲应变的原因。使用从这些测试中收集的数据,我们对平台进行了几次设计更改,并测试了两个不同的原型以减轻弯曲应变。这些设计更改导致引入样品的弯曲应变显著减少。这种减少将使 AFRL 能够收集更准确的数据,使他们能够使用该平台继续研究并为空军开发新的想法和技术。
摘要 新泽西州已设定目标,将 11 吉瓦的海上风力发电量纳入其能源组合,而由于输电限制和拥堵,这将给输电带来重大挑战。当输电限制限制了载流能力,从而导致电价上涨时,就会发生拥堵。缓解拥堵的传统解决方案(例如升级或扩展输电线路)可能既昂贵又耗时。然而,动态线路额定值 (DLR) 系统通过根据天气条件监测输电线路的热极限,为拥堵提供了一种低成本的短期解决方案。本文介绍了 NJ ShorePower 项目,该项目旨在使用 Arduino 传感器和其他产品开发一种低成本的 DLR 系统,以创建广泛的天气监测网络。
LHCB检测器的升级II(预见到2031年)将以1.5×10 34 cm -2 s -1的瞬时发光度运行,以超过300 fb -1的样本积累。每次事件应对42和200带电的粒子轨道的估计堆积,将添加精确的时机,并将其添加到跟踪和导向子系系统中。一个新的顶点定位器(VELO),能够管理预期的7.5倍的数据速率,占用率和辐射量。基于4D混合硅像素技术,具有提高的ASIC速率和时序功能,新的Velo将允许精确的美容和魅力强体标识和实时模式识别。通过详细的模拟,探索了通过详细的模拟,探索通知,内部半径,材料预算和像素尺寸相位空间,同时将冲击参数(IP)分辨率限制为升级I值。在6×10 16 N EQ /cm 2和8×10 15 N EQ /cm 2时的内部半径和寿命末端的两种不同的场景作为进一步优化的起点。对传感器技术(包括LGADS,3DS和Planar Pixels)的进步和当前的研发,重点介绍了辐射硬设计和缺陷工程。与传感器电容和功率预算有关的相关要求是为了实现未来28 nm Protipe提交的每个命中计时目标的30 ps。相对于每个布局方案,研究了冷却,力学和真空实现的改进。将双重Krypton冷却的使用评估为以上1.5 w/cm 2功率耗散的情况。还考虑了可更换的传感器模块,并与3D打印的钛载体相结合。最后,讨论了在六年内进行最终设计优化的全面研发计划。
在大学航空飞行项目课程中设计和实施顶点喷气式飞机过渡课程 Chadwin T. Kendall 先生 丹佛都市州立大学 R. Rhett C. Yates 博士 杰克逊维尔大学 摘要 过去二十年,先进的支线喷气式飞机模拟器,特别是庞巴迪和巴西航空工业公司系列,在大学航空界越来越受欢迎。这些模拟器的课程和项目应用为先进系统和机组资源管理 (CRM) 课程的改进、学术研究和招生铺平了道路。与此同时,美国航空公司,尤其是地区航空公司,鼓励进入其领域的大学航空学生接受喷气式飞机过渡培训。此外,经国际航空认证委员会 (AABI) 认可的大学航空项目必须具有飞行教育的终极高年级体验,其中可能包括顶点课程。大学航空项目现在可以使用这些喷气式飞机模拟器创建顶点课程。在顶点课程中使用支线喷气式飞机模拟器将允许课程评估飞行员技能并评估机组人员环境中的航空决策。它将允许大学航空课程评估其课程目标和学生学习成果,并为学生进入航空职业生涯的下一阶段做好准备。本文讨论了在大学航空中使用支线喷气式飞机模拟器设计和实施顶点喷气式飞机过渡课程。关键词:喷气式飞机过渡课程、CRM、顶点课程、课程、大学航空版权声明:作者保留在 AABRI 期刊上发表的手稿的版权。请参阅 AABRI 版权政策,网址为 http://www.aabri.com/copyright.html
最终的顶点项目由学习者在工作场所构思和执行。该项目将是一个基于学习者在软件工程中的工作角色的业务相关项目。将评估业务和变革管理、专业能力、领导力、技术管理和软件工程技能。该项目将以书面论文和口试结束,按照数字技术解决方案专家评估计划进行。
模型的可解释性一直是一个争论话题。一些研究指出,可解释性是不必要的,一些“白盒”模型,如回归模型或决策树,本质上是可解释的。本文对具有高度相关特征的多元回归模型进行分析,以说明模型在处理复杂数据时可解释性如何失效。在这种情况下,信任模型解释可能会有问题。Shapley 净效应技术有助于确定特征的边际贡献,可用于提高模型的可解释性并揭示有关预测的更多信息。该研究得出的结论是,在所有情况下,包括简单模型甚至更明显的情况,可解释性都是避免得出有偏见和错误结论的必要条件。
b'given x,y \ xe2 \ x88 \ x88 {0,1} n,设置不相交在于确定某些索引i \ xe2 \ x88 \ x88 \ x88 [n]是否x i = y i = 1。我们研究了在分布式计算方案中计算此功能的问题,在该方案中,在长度路径的两个末端将输入X和Y提供给处理器。该路径的每个顶点都有一个量子处理器,可以通过每回合交换O(log n)Qubits来与其每个邻居进行通信。我们对计算设置不相交所需的回合数感兴趣,而恒定概率远离1/2。我们称此问题\ xe2 \ x80 \ x9cset脱节在行\ xe2 \ x80 \ x9d上。集合脱节,以证明在计算模型中计算任意网络的直径的量子分布式复杂性。但是,当处理器在路径的中间顶点上使用的局部内存受到严重限制时,它们只能提供下限。更确切地说,仅当每个中间处理器的本地内存由O(log n)量子位组成时,它们的边界才适用。在这项工作中,我们证明了E \ xe2 \ x84 \ xa6 3 \ xe2 \ x88 \ x9a'
月球顶点:莱纳伽玛棱镜探索。 David T. Blewett 1,*、Jasper Halekas 2、George C. Ho 1、Benjamin T. Greenhagen 1、Brian J. Anderson 1、Sarah K. Vines 1、Leonardo Regoli 1、Jörg-Micha Jahn 3、Peter Kollmann 1、Brett W. Denevi 1、Heather M. Meyer 1、Rachel L. Klima 1 、Joshua T. Cahill 1 、Lon L. Hood 4 、Sonia Tikoo 5 、邹小端 6 、Mark Wieczorek 7 、Myriam Lemelin 8 、Shahab Fatemi 9 、Ann L. Cox 1 、Scott A. Cooper 1 和 William F. Ames 1 。 1 约翰霍普金斯大学应用物理实验室,美国马里兰州劳雷尔 20723。2 爱荷华大学,爱荷华州爱荷华市。3 西南研究所,德克萨斯州圣安东尼奥。4 亚利桑那大学,亚利桑那州图森。5 斯坦福大学,加利福尼亚州斯坦福。6 行星科学研究所,亚利桑那州图森。7 法国蔚蓝海岸天文台。8 加拿大舍布鲁克大学。9 瑞典于默奥大学。(*david.blewett@jhuapl.edu)。
