后部比较/对比后期论述先验比较/对比先验的论述AME预览AME的行为绑扎绑架推理/基于推理能力的学习能力分组能力分组能力分组能力分组能力示威清单异常(异常)异常的依从性培养依从性培训培训培训培养依从性培养依从性依恋依恋依赖性依恋依赖性,超出了艾比尔氏症的绝对症状。吸收能力抽象能力抽象态度抽象智能抽象学习序列的复杂性学术分析学术焦虑/恐惧学术期刊学术学习时间学术学业学业学业检验学术理性学术主义学术社会社会化学术学院加速(长期)忘记忘记加速学习强调理论理论接受理论接受和承诺疗法(ACT)访问能力访问能力促进实现意外强制性的实现意外强制性强制性强制性实践,高于预测的预期成就差距
Shreyas S. Vasanawala放射学教授;斯坦福大学电气工程学院Stanford儿童医院MRI主任,斯坦福大学凯瑟琳·L·布曼计算机和数学科学,电气工程和天文学的助理教授;罗森伯格学者;研究人员,遗产医学研究所
在时空中,事件 A 和 B 可以有三种因果关系:A 先于 B ,B 先于 A ,或者 A 和 B 有因果分离,即它们位于一个类空区间。量子力学允许存在与这些情况都不对应的因果结构。启发式地,这可以描绘为将 A 和 B 之间的顺序置于量子叠加中。更准确地说,已经提出了几种使用“过程矩阵”或“量子开关”来实现不确定因果顺序的方法 [1– 6]。虽然这些方法在数学上并不严格等价,但它们都支持一个基本思想:不确定因果顺序本质上是一种量子现象,它为迄今为止主要在时空理论中探索的概念提供了新的启示。最近,在几种量子开关的实现中已经通过实验观察到了这种现象 [7–12]。为了准确衡量量子理论为因果关系研究带来的新元素,可以将因果序的量子控制视为提供非经典通信优势的一种资源,即量子开关中的两个噪声信道可以比任何单个信道传输更多的信息 [13]。这种方法的好处是可以立即阐明量子开关的物理意义,但它依赖于一个目前尚未解决的问题,即任何局部方是否可以操作性地实施这种量子控制 [14]。在本文中,我们假设实证研究已经给出了一个积极的启发式方法:通过量子开关对因果序的量子控制已经通过实验获得。接下来,我们努力从理论上更好地理解此类设置所展示的优势。特别地,一个长期存在的问题涉及这种优势的起源:为了否认量子开关是一个独立的资源,有人认为,两个信道的单程量子叠加,在没有不确定因果顺序的情况下,已经导致了类似的结果[15,16]。在第二部分介绍基本的数学概念之后,我们探讨了这种非因果顺序的有争议的起源。
简介。—纠缠构成量子力学的非经典特征。一方面,局部隐藏变量模型不能产生非局部量子相关性[1,2]。通过非本地游戏[3,4]很好地说明了这个想法,在这种情况下,利用纠缠资源的策略的玩家可以完成分布式的计算任务而无需经典的通讯。此外,在参考文献中。[5],结果表明,即使是有限的经典通信也无法模仿图形态的局部隐藏变量模型[6]。另一方面,上下文性[7-11]是局部不兼容的测量逃避全局解释的程度,是与计算和量子优势的硬度相关的另一个非经典特征[12-19]。结合了这些特征,Bravyi等人的开创性作品。al。[20]和其他[21-25]比较了某些非本地游戏的多体内偏见,这些易变是通过有限的经典沟通辅助到具有有限的扇形扇形门的经典计算的。这种观点成功地证明了有限的综合复杂性类别之间的非条件指数分离,证明了浅量子电路对其经典反应的力量。
我们研究了通过不确定的因果顺序增强的量子计量学,证明了在连续变量系统中估计两个平均位移乘积的二次优势。我们证明,没有任何以固定顺序使用位移的设置能够使均方根误差消失得比海森堡极限 1 =N 更快,其中 N 是影响平均值的位移数。与此形成鲜明对比的是,我们表明,以两种替代顺序的叠加探测位移的设置产生的均方根误差以超海森堡缩放 1 =N 2 消失,我们证明这是所有具有确定因果顺序的设置的叠加中最优的。我们的结果开启了以不确定顺序探测量子过程的新测量设置的研究,并提出了对正则对易关系的增强测试,并可能应用于量子引力。
原子对 键距 (Å) Al-Al 3.1 Al-Si 3.1 Al-O 1.75 Al-Na 2.8 Al-H 2.38 Si-Si 3.1 Si-O 1.65 Si-Na 3.35 Si-H 2.3 OO 2.6 O-Na 2.6 OH 0.99 Na-Na 3.5 Na-H 2.44 HH 1.42
可调节的谐振峰对于在生物传感,过滤和光学通信中的高精度光子设备是必需的。在这项研究中,我们专注于具有不同时期的双ribbon二维金光栅,并详细检查了不同的光栅时期的瑞利条件,以了解共振波长的激发。我们在不对称的双丝带金光栅上展示了可调节的共振行为,周期为400至600 nm。该结构由二硫化钼(MOS 2)单层上的亚波长金带组成,并由二氧化硅底物支撑。在可见的谐振波长时,对场分布的分析揭示了表面等离子体(SP)激发,并伴随着传播衍射顺序转化为evaneScent的波。当谐振峰出现在透射衍射顺序消失的波长下时,SP会在MOS 2-戈尔德色带界面和传输域内激发。相比之下,通过消失反射衍射顺序,SP在金带空气界面和反射域中激发。了解SP激发波长突出了这些光栅对可调纳米级光子设备的潜力。它们的精确共振控制和简单的制造使其适合可扩展的光学应用。
为了研究哪些是最普遍的与局部量子力学兼容的因果结构,Oreshkov 等人 [1] 引入了过程的概念:一些参与方共享的资源,允许他们之间进行没有预定因果顺序的量子通信。这些过程可用于执行标准量子力学中不可能完成的几项任务:它们允许违反因果不等式,并在计算和通信复杂性方面具有优势。尽管如此,目前还不知道有任何可用于违反因果不等式的过程是物理可实现的。因此,人们对确定哪些过程是物理的、哪些只是该框架的数学产物有着浓厚的兴趣。在这里,我们通过提出一个净化公设在这个方向上取得了关键进展:过程只有可净化才是物理的。我们推导出过程可净化的必要条件,并表明几个已知过程不满足这些条件。
描述提供 Shang 和 Ap-ley (2019) < doi:10.1080/00224065.2019.1705207 > 提出的三种方法,用于在单位超立方体内生成完全顺序的空间填充设计。'完全顺序的空间填充设计'是指嵌套设计的序列(因为设计大小从一个点到某个最大点数不等),其中设计点一次添加一个,并且每个尺寸的设计都具有良好的空间填充特性。两种方法以最小成对距离标准为目标并生成最大最小设计,其中一种方法在设计规模较大时更有效。一种方法以最大孔尺寸标准为目标,并使用启发式方法来生成更接近极小最大设计的设计。
软件工程行业越来越意识到神经多样性工程师在劳动力队伍中的作用和价值。其中一个动机是将软件开发所需的技能与患有自闭症谱系障碍的个人的处理优势相结合。神经多样性的一个方面是阅读障碍,通常表现为个体的一系列阅读缺陷。在本文中,我们以最近的研究为基础,该研究试图调查患有阅读障碍的程序员阅读程序代码的方式是否与没有阅读障碍的程序员不同。该分析的特别重点是阅读代码时扫视运动的性质和线性模式。本文介绍了一项研究,其中使用眼动追踪设备记录了 28 名程序员(14 名患有阅读障碍,14 名没有阅读障碍)在阅读和理解三个屏幕上的 Java 程序时的目光注视。利用更广泛的阅读障碍文献中的见解,制定了假设来反映患有阅读障碍的程序员预期的扫视行为。一系列现有的程序阅读线性指标被调整并用于数据统计分析。结果与其他最近的研究一致,表明患有阅读障碍的程序员没有表现出与对照组明显不同的线性模式。非线性凝视约占所有扫视运动的 40%。根据现有数据,我们提出了一些初步见解,表明理解程序代码时的非线性阅读程度可能补充患有阅读障碍的程序员的处理和解决问题的风格。