获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要 — 脑启发计算利用神经科学原理来支撑大脑在解决认知任务方面无与伦比的效率 — 正在成为一种有前途的途径,以解决当今深度学习面临的若干算法和计算挑战。尽管如此,当前的神经形态计算研究是由我们在执行确定性操作的计算平台上运行深度学习算法的完善概念驱动的。在本文中,我们认为在概率神经形态系统中采用不同的方式执行时间信息编码可能有助于解决该领域的一些当前挑战。本文将超顺磁隧道结视为一种潜在的途径,以实现新一代脑启发计算,它结合了计算神经科学的两个互补见解的各个方面和相关优势 — — 信息如何编码以及计算如何在大脑中发生。硬件算法协同设计分析证明 97。由于时间信息编码,状态压缩的 3 层自旋电子学使随机脉冲网络在 MNIST 数据集上具有高脉冲稀疏度,准确率为 41%。