摘要:超顺磁性氧化铁纳米粒子(SPION)是一种独特的纳米材料,具有卓越的磁性和生物相容性,因此最近引起了研究人员的关注。SPION 在诊断、药物输送、生物传感和生物成像等领域有广泛的应用。通过施加外部磁场来控制这些纳米粒子的能力使它们成为如此广泛应用的完美纳米材料。此外,SPION 具有独特的表面化学性质,允许用不同的有机或无机材料进行表面功能化/涂层,从而使其适用于不同的方面。本综述总结了最近提出的用于合成适用于不同应用的 SPION 的方法。此外,本文还讨论了 SPION 的惊人特性。最后,概述了 SPION 的一些最新应用。关键词:SPION;药物输送;磁性纳米粒子;顺磁性材料;表面功能化;功能材料。
摘要。胶质母细胞瘤 (GB) 是一种高度侵袭性和浸润性的脑肿瘤,尽管进行了最大限度的安全切除、化疗和放疗,但其预后不良且复发率高。超顺磁性氧化铁纳米粒子 (SPION) 是一种新型工具,可用于许多应用,包括磁靶向、药物输送、基因输送、高温治疗、细胞追踪或多种同时功能。SPION 通过靶向肿瘤细胞蛋白或肿瘤血管,被研究作为磁共振成像肿瘤造影剂。在小鼠模型中,SPION 已将药物输送到 GB 肿瘤。除了靶向肿瘤细胞进行成像或药物输送外,SPION 还被证明可有效靶向高温。除了动物模型外,还对多种不同的 SPION 使用模式进行了人体试验,为进一步的临床前和临床试验提供了重要的发现和经验教训。SPION 为监测和治疗 GB 肿瘤开辟了几种新途径;在这里,我们回顾了当前的研究和各种可能的临床应用。
亚历山德罗·卡戈尔(Alessandro Cagol),医学博士,帕斯卡·本克特(Pascal Benkert) MD的Ernst-Wilhelm Radue,MD,Johanna Oechtering,MD,Johannes Lorscheider,MD,Marcus d'Souza,MD ,医学博士,博士,医学博士Oliver Findling,医学博士Andrew Chan,Anke Salmen,MD,Caroline Pot,MD,PhD,Claire Bridel,MD,Chiara Zecca,MD,MD, Tobias Derfuss 医学博士、Johanna M. Lieb 医学博士、Luca Remonda 医学博士、Franca Wagner 医学博士、Maria Isabel Vargas 医学博士、Renaud A. Du Pasquier 医学博士、Patrice H. Lalive 医学博士、Emanuele Pravat`a 医学博士、Johannes Weber 医学博士、Philippe C. Cattin 博士、Martina Absinta 医学博士、博士、Claudio Gobbi 医学博士、David Leppert 医学博士、Ludwig Kappos 医学博士、Jens Kuhle 医学博士、博士以及 Cristina Granziera 医学博士、博士
我们对化学和相关的电子结构进行了全面分析 - 菱形Cr x 3(x = br,cl,i)van der waals散装晶体的构造。使用广义梯度近似加上动态均值字段理论,我们明确地证明了局部动力相关性对于对出现的近相质质量的一致理解和Mott局部电子状态的一致理解的重要性,显示了材料依赖性的单电子GGA Linehape和多孔电子相互作用之间的相互作用。为了探测相关的顺磁性电子状态,我们对CRCL 3和CRBR 3散装晶体进行了X射线吸收光谱(XAS)测量。我们相关的多体研究与了解顺磁性CR-Trihalides晶体的电子结构重建有关,并应广泛适用于其他范德华磁铁材料。
人体研究中的 ROI 分析 两位获得委员会认证的神经放射科医生(SO 和 YF,拥有 20 年经验)一致将 ROI 放置在 QSM 图像的中心切片上的以下每个区域中:GP、壳核、尾状核、黑质、红核、齿状核和脉络丛的低信号强度区域。然后使用开源软件(ImageJ,版本 1.50;美国国立卫生研究院,马里兰州贝塞斯达)将 ROI 的位置应用于来自同一患者或志愿者的 CT 图像。我们还根据 CT 和 MRI 扫描(包括 QSM、T1 加权、T2 加权和 T2* 加权图像)和临床信息在出血和钙化病变上放置了 ROI。当抗磁性病变被顺磁性区域包围时,优先选择内侧抗磁性(钙化)部分放置ROI。对于每个有病变的患者,最多选择3个病变放置ROI。计算每个ROI的平均CT衰减值和平均QSM值(磁化率)。当平均QSM值为正值(顺磁性ROI)时,还计算最大和第95百分位CT衰减值以及最大和第95百分位QSM值,以更好地理解CT衰减值和磁化率的特征,这在表观扩散系数的分析中通常采用(18)。对于平均QSM值为负值的ROI(抗磁性ROI),计算最大和第95百分位CT衰减值以及最小和第5百分位QSM值。通过以下对 CT 衰减值与磁化率之间的相关性进行评估:顺磁性 ROI 的平均 CT 衰减值与平均 QSM 值、最大 CT 衰减值与最大 QSM 值、第 95 百分位 CT 衰减值与第 95 百分位 QSM 值;抗磁性 ROI 的平均 CT 衰减值与平均 QSM 值、最大 CT 衰减值与最小 QSM 值、第 95 百分位 CT 衰减值与第 5 百分位 QSM 值。
摘要:循环肿瘤DNA(ctDNA)检测已被认为是一种有前途的癌症诊断液体活检方法,各种ctDNA检测用于早期检测和治疗监测。基于可分散磁性纳米粒子的电化学检测方法已被提议作为基于检测性能和平台材料的特点的ctDNA检测的有前途的候选方法。本研究提出了一种纳米粒子表面局部基因扩增方法,将Fe3O4-Au核-壳纳米粒子整合到聚合酶链式反应(PCR)中。这些高度分散且磁响应的超顺磁性纳米粒子充当纳米电极,在PCR扩增后在纳米粒子表面原位扩增和积累目标ctDNA。随后捕获这些纳米粒子并进行重复的电化学测量以诱导重构介导的信号放大,以实现超灵敏(约3aM)和快速(约7分钟)的体外转移性乳腺癌ctDNA检测。该检测平台还可以检测体内样本中的转移性生物标志物,凸显了其临床应用的潜力,并可进一步扩展到对各种癌症进行快速、超灵敏的多重检测。关键词:循环肿瘤DNA、液体活检、基因扩增、电化学检测、磁性纳米粒子、表面功能化、超顺磁性
热力学基本原理、相共存、吉布斯相律和相图 理想气体状态方程和范德华理论的扩展 朗道理论和振动原理(金兹堡-朗道) 理想气体、晶格气体的统计理论和气体与固体合金热力学性质的常规溶液理论。 应力张量的统计力学:维里尔公式 量子谐振子的统计和固体的比热 自旋统计:顺磁性和铁磁性,铁磁性的平均场近似
Ferumoxytol 由超顺磁性氧化铁组成,表面包裹一层碳水化合物外壳,有助于将生物活性铁与血浆成分隔离,直到铁-碳水化合物复合物进入肝脏、脾脏和骨髓的网状内皮系统巨噬细胞。铁从巨噬细胞囊泡内的铁-碳水化合物复合物中释放出来。然后,铁要么进入细胞内储存铁池(例如铁蛋白),要么转移到血浆转铁蛋白中,然后转运到红细胞前体细胞中,并被纳入血红蛋白。
奥斯陆大学的分子生物科学系一直在使用ESR低温恒温器研究具有生物活性金属中心的酶的结构和功能性能。尤其是该部门对核糖核苷酸还原酶感兴趣,研究了其二铁中心的稳定和短暂的顺磁性态和不同的氨基酸自由基,例如酪氨酸,半胱氨酸和色氨酸。使用ESR低温恒温器是无价的,尤其是对于金属中心的研究,在不同能量水平之间电子自旋分布的基于温度的微调是至关重要的因素。
化疗无法消灭癌细胞,主要是因为药物不能选择性地在肿瘤部位积聚,而这也会影响健康细胞。在本研究中,我们研究了磁铁矿纳米结构脂质载体 (NLC),以便将姜黄素靶向递送到乳腺癌细胞中。采用共沉淀法,在碱性介质中将 FeCl 2 和 FeCl 3 以适当的比例混合,制备超顺磁性氧化铁纳米粒子 (SPION)。所得磁流体非常稳定且具有高磁性。为了制备含有 NLC (NLC-SPION)、十六烷基棕榈酸酯和鱼肝油的 SPION,分别使用 Tween 80 和 span60 作为固体脂质、液体脂质、表面活性剂和助表面活性剂。将抗癌药物姜黄素负载于NLC-SPIONs(CUR-NLC-SPIONs)中,评价其粒径、zeta电位、多分散指数(PDI)、药物包封率、载药量和热稳定性等特性。结果表明,CUR-NLC-SPIONs的平均粒径为166.7±14.20nm,平均zeta电位为-27.6±3.83mv,PDI为0.24±0.14。所有制备的纳米粒子(NPs)的包封率为99.95±0.015%,载药量为3.76±0.005%。通过透射电子显微镜(TEM)进行形态学研究,表明NPs呈球形。 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物 (MTT) 测定细胞活力证明,合成的 CUR-NLC-SPION 对人类乳腺癌细胞具有比游离姜黄素更好的细胞毒活性。这种新型药物输送系统受益于超顺磁性,可作为开发新型生物相容性药物载体的合适平台,并有潜力用于靶向癌症治疗。