Orita,A。Mukai,H。Tomita,S。Tomita,K。Bamagishi,H。Ebi,Y。Tamada,K。Kamada,H。Woo,F。Ishida,E。Takada,H。 /div;Orita,A。Mukai,H。Tomita,S。Tomita,K。Bamagishi,H。Ebi,Y。Tamada,K。Kamada,H。Woo,F。Ishida,E。Takada,H。 /div;
[纸质评论摘要] 1。文章内容本文通过使用TOL2 transposon将导向RNA(GRNA)敲入基因组来建立了一种方便地创建条件敲除小鼠的方法。 2.纸质评论1)为研究目的而开创性和独创性,使用特定周期和组织特异性的条件敲除小鼠至关重要,以分析单个水平的基因功能。但是,传统的CRE/LOXP方法需要多种小鼠菌株的交配,这需要时间和精力。在此背景下,申请人结合了三个现有系统:转座系统,CRE/LOXP系统和CRISPR/CAS9系统,以建立一个系统,允许在短时间内更加方便地创建有条件的淘汰小鼠。这种观点值得认可。 2)社会意义从这项研究中获得的主要结果如下。 1。cag-creer小鼠和rosa-lsl-cas9敲入小鼠被体外受精,质粒和TOL2转座子mRNA,其在TOL2识别序列中夹在小鼠酪氨酸酶的GRNA之间的序列,将Tyr GRNA插入了Born Born Rece的6.3%-13.6%中。 2。当他对出生的小鼠施用他莫昔芬时,在某些情况下观察到头发颜色的变化有限。 3。在三只小鼠(TG1、2、3)中观察到缺失和插入3.1%,6.8%和7.5%的酪氨酸酶基因。 4。当F0雄性小鼠交配时,11.1%的F1小鼠显示GRNA盒传播。如上所述,申请人已经建立了一个系统,该系统允许在短时间内更方便,更简单地创建有条件的敲除小鼠。可以说这是一项有用的研究发现,可以加速个人水平的基因的功能分析。 3)在这项研究中,使用T7分析和深层测序分析了GRNA的基因组裂解,并使用PCR或Southern印迹分析了下一代小鼠中GRNA盒的传播。这种方法是在足够的分子生物学实验技术的支持下进行的,这表明申请人的知识和技术技能在研究方法上足够高,同时可以看出,这项研究是在非常谨慎的准备中进行的。
转座元素对秀丽隐杆线虫的姐妹种类(可转座元素的影响对C. inopinata的进化,Caenorhabditis elegrans的亲戚)
何文伟博士现为斯坦福大学理论物理研究所博士后学者,研究非平衡量子多体现象和新兴量子技术的应用。此前,他是哈佛大学的摩尔博士后研究员,与 Mikhail Lukin 教授和 Eugene Demler 教授一起工作。从 2022 年 8 月开始,他将担任新加坡国立大学校长青年(助理)教授。何文伟于 2017 年在日内瓦大学师从 Dmitry Abanin 教授获得博士学位,2015 年在滑铁卢大学/圆周研究所师从 Guifre Vidal 教授获得理学硕士学位,2013 年在普林斯顿大学获得学士学位,与 Duncan Haldane 教授一起工作。摘要:普遍性是指复杂系统普遍属性的出现,这些属性不依赖于精确的微观细节。量子热化是强相互作用量子多体系统非平衡动力学的一个例子,其中局部区域随着时间的推移变得由吉布斯集合很好地描述,而该集合仅受少数几个系统参数(例如温度和化学势)控制。局部区域与其补体(“浴”)之间产生的大量纠缠是这种普遍性出现的关键。在这次演讲中,我将介绍一种新的普遍行为,它源于某些类型的量子混沌多体动力学,超越了传统的热化。我将描述单个多体波函数如何编码由小子系统支持的纯态集合,每个纯态都与局部浴的(投影)测量结果相关。然后,我将展示这些量子态的分布如何接近均匀随机量子态的分布,即集合形成量子信息理论中所谓的“量子态设计”。我们的工作为研究量子混沌提供了一个新视角,并在量子多体物理、量子信息和随机矩阵理论之间建立了桥梁。此外,它还提供了一种实用且硬件高效的伪随机态生成方法,为设计量子态层析成像应用和近期量子设备的基准测试开辟了新途径。
对公司财务和非财务信息进行强有力的独立鉴证可以建立对企业的信任和信心,及时向管理层提出建设性挑战,并为投资者、监管机构和其他利益相关者提供关键信息。安永的鉴证业务通过提供高质量的专业服务,帮助增强资本市场及其他领域的信心。我们的四大鉴证服务集群——包括审计、财务会计咨询服务、法务和诚信服务以及气候变化和可持续发展服务——提供见解和技术知识。通过灵活和智能地运用成熟的全球方法、技术和业务解决方案,我们的 1,450 名鉴证专业人员组成了合适的多学科团队,帮助客户解决最复杂的问题。这提供了一定程度的信任,可增强投资者信心,并帮助组织履行监管责任,管理风险并支持长期可持续的经济增长。
应力-应变曲线是材料机械性能的重要表示,弹性模量、强度和韧性等重要性能均由此曲线定义。然而,通过有限元法 (FEM) 等数值方法生成应力-应变曲线的计算量非常大,尤其是考虑材料的整个失效路径时。因此,很难对具有较大设计空间的材料进行高通量计算设计,尤其是考虑超出弹性极限的机械响应时。在本文中,我们结合使用主成分分析 (PCA) 和卷积神经网络 (CNN) 来预测二元复合材料在整个失效路径上的整个应力-应变行为,其动机是经验模型的推理速度明显更快。我们通过可视化 PCA 的特征基来表明 PCA 将应力-应变曲线转换为有效潜在空间。尽管数据集中只有 10-27% 的可能微观结构配置,但当根据导出的材料描述符(例如模量、强度和韧性)测量模型性能时,预测的平均绝对误差为数据集中值范围的 10%。我们的研究展示了使用机器学习加速材料设计、特性和优化的潜力。© 2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
序号 内容 页码 1 第 1 部分 项目简介 5 2 第 2 部分 招标邀请和投标程序时间表 5 投标前会议 6 沟通 6 3 第 3 部分 申请人须知 6-10 投标程序 6 最低资格标准 7 技术提案的开启 7 保证金 (EMD) 7 澄清 8 提交内容的详细信息 8 提案的提交 9 提案截止日期 9 提案的开启和澄清 9 4 第 4 部分 评估 10-14 提案评估:第一部分提交 11 评分方法:技术提案 11 技术评估标准 12-13 授予咨询权 14 5 附录 A 附信 15 6 附录 B 申请人的详细信息 16 7 附录 C律师 17 9 附录 D 方法论陈述和方法 18 10 附录 E 主要专家详情 19-20 11 附录 F 财务能力 21 12 附录 G 财务建议书格式 22 13 附表 A 职权范围 24-25 总则 24 工作范围 24 14 一般条款 26 交付成果和付款时间表 26 15 附表 B 顾问任命协议草案 27 16 合同条件 28 一般条款 28-30 协议的开始、完成和终止 30-33 协议期限 33 向顾问付款 33-34 履约保证 34 顾问人员 34-35 顾问的责任和义务 35-36 当局的义务 36 其他条件36-37 遵守法律 37
我们提出了一种方案,通过量子计算机上的统计抽样来构建相互作用电子系统的单粒子格林函数 (GF)。尽管电子自旋轨道的产生和湮灭算符的非幺正性使我们无法有选择地准备特定状态,但已证明量子比特可以进行概率状态准备。我们提供配备最多两个辅助量子比特的量子电路,以获得 GF 的所有组件。我们基于幺正耦合簇 (UCC) 方法对 LiH 和 H 2 O 分子的 GF 构建进行了模拟,通过比较 UCC 方法中的准粒子和卫星光谱以及全配置相互作用计算的光谱来证明我们方案的有效性。我们还通过利用 Galitskii-Migdal 公式来检查采样方法的准确性,该公式仅从 GF 中给出总能量。
高性能NF层状结构化的Go-amphipHilic聚合物纳米复合膜通过合成的聚合物控制层间间距,以增强水的渗透性和精确的水处理溶质抑制