招募 ● 对患有急性呼吸道疾病 (ARI) 的门诊患者(初级保健、紧急护理、急诊科、远程医疗)进行前瞻性筛查。 ● 2023 年 10 月 20 日 – 2024 年 5 月 24 日。 资格标准 ● 年龄 6 个月 – 64 岁。 ● 咳嗽且病程 ≤7 天的 ARI。 ● 未服用流感抗病毒药物。 流感病例状况 ● 使用多重实时逆转录聚合酶链反应 (RT-PCR) 检测呼吸道标本以识别流感病例;对照组为流感阴性。 ccIIV4 疫苗收据 ● 发病前 ≥14 天(年龄≥9 岁)或根据美国免疫实践咨询委员会 (ACIP) 建议(年龄<9 岁)收据记录。 ccIIV4 疫苗有效性 (VE) ● 使用逻辑回归模型,估计为 1 – 比值比 x 100%,并预先调整年龄和日历时间。● 分析仅限于 ccIIV4 接种者和未接种疫苗的参与者。
提出了一种基于深层关联神经网络的鸡蛋状态智能分类的方法。此方法旨在自动孵化过程中鸡蛋产卵的可视化结果的识别和解释。关联自动编码器的模型比传统方法具有多个优点。例如,输入图像是预大尺寸的,并且对“卷积 - 汇总/UPS采样层”的计数实际上是根据图像大小来定义的,这提高了分类的准确性。此外,平面计数被确定为分隔商,将单元在输入层中的细胞计数(两者计数)对加倍对的功率计数计数“卷积 - 汇总/上取样层”,以将整个单元格保留在汇总/UPS采样后的总细胞计数。此过程将层平面的大小宽度和高度减半,使模型层的结构定义自动化。Deep Boltzmann机器模型比传统的Deep Boltzmann机器具有多个优点。这些包括预先调整输入图像,确定有限的Boltzmann机器的数量在经验上以提高分类的准确性,并将神经元设置为隐藏层中的神经元数量,因为两倍的神经元在可见层中的神经元计数,以满足Kolmogorov Theorem在多维连续函数的表现上,具有单位持续函数的持续功能的表现。此模型自动化模型层体系结构的定义。基于深层关联神经网络的鸡蛋发育状态的智能分类方法可以应用于智能系统中,以分类鸡蛋蜡烛可视化在工业家禽生产中的孵化过程中。
摘要本文研究了视觉模型(VLM)在外周血细胞自动形态学分析中的应用。虽然手动显微镜分析仍然是血液学诊断的金标准,但它既耗时又可能会受到观察者间的变化。这项工作旨在开发和评估能够从微观图像中对血细胞进行准确的形态描述的微调VLM。我们的方法论包括三个主要阶段:首先,我们创建了一个合成数据集,该数据集由10,000个外周血细胞图像与专家制作的形态描述配对。第二,我们在三个开源VLMS上使用低级适应性(LORA)和量化Lora(Qlora)进行了微调方法:Llama 3.2,Qwen和Smovlm。最后,我们开发了一个基于Web的界面,用于实用部署。的结果表明,在预先调整后所有模型的所有模型中都有显着改善,QWEN的性能最高(BLEU:0.22,Rouge-1:0.55,Bertscore F1:0.89)。为了确保可访问性并实现正在进行的评估,该模型已被部署为网络空间的Web应用程序,使研究社区可自由使用。我们得出的结论是,微调的VLM可以有效地分析外周血细胞形态,从而为血液学分析提供了标准化的潜力。这项工作建立了一个框架,可以将视觉模型改编为专业的医疗成像任务,这对改善临床环境中的诊断工作流程的影响。完整的实现可在GitHub