b'Abstract本文讨论了将双重/伪证机器学习(DDML)与堆叠配对,这是一种模型平均方法,用于结合多个候选学习者,以估计结构参数。除了传统的堆叠外,我们还考虑了可用于DDML的两个堆叠变体:短堆栈利用DDML的交叉拟合步骤可大大减轻计算负担,并汇总堆叠量强制执行常见的堆叠权重,而不是交叉折叠。使用校准的模拟研究和两种估计引用和工资中性别差距的应用,我们表明,与基于单个预先选择的学习者的常见替代方法相比,堆叠的DDML对部分未知的功能形式更强大。我们提供实施建议的Stata和软件。JEL分类:C21,C26,C52,C55,J01,J08'