摘要:通过线材+电弧增材制造 (WAAM) 成功高效地生产具有特定特征的零件,在很大程度上取决于选择正确且通常相互关联的沉积参数。这项任务在制造薄壁时可能特别具有挑战性,因为薄壁可能会受到加工条件和热积累的严重影响。在此背景下,本研究旨在扩大工作范围并优化 WAAM 中的参数条件,以预制件的相对密度和表面方面作为质量约束。实验方法基于通过 CMT 工艺在其标准焊接设置上沉积薄 Al5Mg 壁,并采用主动冷却技术来增强沉积稳健性。通过阿基米德方法估算内部空隙。通过视觉外观评估壁的表面质量,通过横截面分析评估表面波纹度。所有条件均表现出高于 98% 的相对密度。通过在焊枪上添加辅助保护气喷嘴和部件散热强度,将标准焊接硬件升级为 WAAM 用途,大大扩展了工艺工作范围,并通过多目标优化成功证明了其适用性。总之,提出了一种实现预期预制件质量的决策程序。
Silvar™ 和 Silvar-K™ 是复合材料,其微结构由两种相互渗透的金属相组成:纯银和颗粒状 Invar™ 或 Kovar™ 合金。为了制造 Silvar™,需要将通过粉末冶金制成的多孔 Invar™ 或 Kovar™ 预制件与液态银渗透。渗透后,材料被轧制成显微照片上呈现的一种微结构,如背面所示。这里的暗相是 Invar™ 或 Kovar™,亮相是银。
超级电容器纤维具有充电时间短、循环寿命长和功率密度高的特点,有望为基于柔性织物的电子产品供电。然而,到目前为止,只生产出了短长度的功能性纤维超级电容器。这项研究的主要目标是引入一种超级电容器纤维,以解决功能可扩展性、灵活性、包层不渗透性和长度性能等剩余挑战。这是通过自上而下的制造方法实现的,其中宏观预制件被热拉成全功能储能纤维。预制件由五个部分组成:热可逆多孔电极和电解质凝胶;导电聚合物和铜微线集电器;以及封装密封包层。该工艺生产出 100 米长的连续功能性超级电容器纤维,比之前报道的任何纤维都要长几个数量级。除了柔韧性(曲率半径~1 毫米)、防潮性(100 次洗涤循环)和强度(68 MPa)之外,这些纤维在 3.0 V 时的能量密度为 306 µWh/cm 2,在 1.6 V 时经过 13,000 次循环后电容保持率约为 100%。为了展示这种纤维的实用性,它首次采用机器编织并用作 3D 打印长丝,开辟了一个新的应用领域。
摘要:为了在电子封装领域引入新的键合方法,进行了理论分析,该分析应提供有关反应多层系统 (rms) 产生足够的局部热量以用于硅片和陶瓷基板之间连接工艺的潜力的大量信息。为此,进行了热 CFD(计算流体动力学)模拟,以模拟 rms 反应期间和之后键合区的温度分布。该热分析考虑了两种不同的配置。第一种配置由硅片组成,该硅片使用包含 rms 和焊料预制件的键合层键合到 LTCC 基板(低温共烧陶瓷)。反应多层的反应传播速度设置为 1 m/s,以便部分熔化硅片下方的焊料预制件。第二种配置仅由 LTCC 基板和 rms 组成,用于研究两种布置的热输出之间的差异。 CFD 模拟分析特别侧重于对温度和液体分数轮廓的解释。进行的 CFD 热模拟分析包含一个熔化/凝固模型,该模型除了模拟潜热的影响外,还可以跟踪焊料的熔融/固态。为了为实验研究的测试基板设计提供信息,模拟了 Pt-100 温度探头在 LTCC 基板上的实际行为,以监测实验中的实际键合。所有模拟均使用 ANSYS Fluent 软件进行。
o 汽车、船舶、风车叶片、浴缸和淋浴器、医疗设备、建筑结构、储罐 o 航天器、飞机、直升机、防弹衣、假脚、能源应用、先进汽车和非结构应用(传热、导电性) • FRP 行业(树脂制造商、玻璃纤维制造商、制造机器制造商和制造车间)。 • 讨论先进材料行业(主要航空航天公司、主要零件供应商、次要零件供应商、工具供应商、制造机器制造商、生产材料供应商、纤维制造商、树脂制造商、预浸料公司、核心材料制造商、纤维编织商和预制件制造商)。
近年来,人们广泛研究了陶瓷制造过程中某些废料的回收利用,以从经济上证明与陶瓷制造相关的高昂成本是合理的,并避免这些废物被填埋[1-5]。多孔陶瓷具有许多应用领域,包括催化剂载体、熔融金属过滤器、高温隔热材料、电化学反应器中的隔板、生物反应器和骨组织工程、轻质夹层结构、水净化微孔膜和废水处理。此外,多孔陶瓷预制件还用于制备陶瓷-聚合物和陶瓷-金属复合材料[6]。陶瓷在许多应用领域的性能优于聚合物和金属竞争对手,因为它们的密度相对较低,这意味着重量轻、耐腐蚀(包括热腐蚀液体和气体)、热稳定性、化学惰性和
先进的光纤解决方案一种直接且不显眼地编织到织物中的基于光纤的条形码可以通过自动分拣设备中的传统光谱仪快速读取,从而完成从初始制造到重复使用的整个循环。为了实现这种光纤条形码,林肯实验室国防织物发现中心和密歇根大学的研究人员设计了一种光子光纤,其可调整的周期性可以提供织物组成材料的光学特征。开发过程使用由交替层市售聚合物(即聚碳酸酯和聚甲基丙烯酸甲酯)薄膜组成的预制件,将这些层热拉伸成层厚度小于 5 微米的微纤维。可以通过拉伸过程控制光纤的光子反射和吸收特性,以创建不同织物特有的聚合物组合。
混合材料在发动机设计中引起了人们的关注和兴趣。对于目前的一些发动机,风扇叶片的核心体由 3D 编织复合材料组成,而前缘则由钛制成。这些复杂复合材料翼型的制造通常涉及漫长的过程,首先将树脂注入最初由增强预制件填充的模具中(RTM 工艺 - 树脂传递模塑)。用于优化和控制工艺的相关成型工艺模拟通常与现实有很大不同,因为输入物质材料参数在空间和时间上都存在重要变化,而这些变化在模拟中没有(或很少)考虑。目前,空客和波音公司正在努力通过监控技术和RTM工艺的建模与仿真来提高复合材料制造工艺的稳健性和可靠性。因此,为了能够控制工艺并确保高质量的部件成型,制造系统(即注射工艺)应实时适应输入物质特性的变化条件,也适应工厂的任何变化甚至客户的需求。
混合材料在发动机设计中引起了人们的关注和兴趣。对于目前的一些发动机,风扇叶片的核心体由 3D 编织复合材料组成,而前缘则由钛制成。这些复杂复合翼型的制造通常涉及漫长的工艺过程,这些工艺过程是将树脂注入最初装有增强预制件的模具中(RTM 工艺 - 树脂传递模塑)。用于优化和控制工艺的相关成型工艺模拟通常与实际情况有很大不同,因为输入物质材料参数在空间和时间上都存在重大变化,而这些变化在模拟中没有考虑(或没有得到很好的考虑)。目前,空客和波音公司正在努力通过监控技术和RTM工艺的建模与仿真来提高复合材料制造工艺的稳健性和可靠性。因此,为了能够控制工艺并确保高质量的部件成型,制造系统(即注射工艺)应实时适应输入物质特性的变化条件,也适应工厂的任何变化甚至客户的需求。
摘要:在本研究中,我们提出了一种混合制造工艺来生产高质量的 Ti6Al4V 零件,该工艺结合了增材粉末激光定向能量沉积 (L-DED) 用于制造预制件,随后的热锻作为热机械加工 (TMP) 步骤。在 L-DED 之后,材料在两种不同的温度 (930 ◦ C 和 1070 ◦ C) 下热成型,随后进行热处理以消除应力退火。在小子样本上进行拉伸试验,考虑到相对于 L-DED 构建方向的不同样本方向,并产生非常好的拉伸强度和延展性,类似于或优于锻造材料。所得微观结构由非常细粒、部分球化的 α 晶粒组成,平均直径约为 0.8–2.3 µ m,位于 β 相基质内,占样本的 2% 至 9%。在亚β转变温度范围内锻造后,典型的 L-DED 微观结构不再可辨别,并且增材制造 (AM) 中常见的拉伸性能各向异性显著降低。然而,在超β转变温度范围内锻造会导致机械性能的各向异性仍然存在,并且材料的拉伸强度和延展性较差。结果表明,通过将 L-DED 与 Ti6Al4V 亚β转变温度范围内的热机械加工相结合,可以获得适用于许多应用的微观结构和理想的机械性能,同时具有减少材料浪费的优势。