摘要 — 在本研究中,我们介绍了我们参与 BioCreative VII 挑战赛的 DrugProt 任务的工作。药物-靶标相互作用 (DTI) 对于药物发现和重新利用至关重要,通常是从实验文章中手动提取的。PubMed 上有超过 3200 万篇生物医学文章,从如此庞大的知识库中手动提取 DTI 具有挑战性。为了解决这个问题,我们为 Track 1 提供了一个解决方案,旨在提取药物和蛋白质实体之间的 10 种相互作用。我们应用了一个集成分类器模型,该模型结合了最先进的语言模型 BioMed-RoBERTa 和卷积神经网络 (CNN) 来提取这些关系。尽管 BioCreative VII DrugProt 测试语料库中存在类别不平衡,但与挑战赛中其他提交的平均水平相比,我们的模型取得了良好的表现,微 F1 得分为 55.67%(BioCreative VI ChemProt 测试语料库为 63%)。结果显示了深度学习在提取各种类型 DTI 方面的潜力。
旨在自动从科学文献中提取信息的科学信息提取(Sciie)比以往任何时候都变得更加重要。但是,没有用于聚合物材料的Sciie数据集,这是我们日常生活中普遍使用的重要材料类别。为了弥合这一差距,我们介绍了P oly IE,即用于聚合物材料的新科学数据集。p oly IE是从146个全长聚合物学术文章中提出的,这些文章用不同的命名实体(即材料,性质,瓦斯,条件)以及域专家的n个关系进行注释。p oly IE提出了由于实体的多种词汇格式,企业之间的歧义和可变长度关系所带来的独特挑战。我们评估了最先进的实体提取和关系提取模型,即分析其优势和劣势,并突出了这些模型的一些困难案例。据我们所知,P oly IE是第一个用于聚合物材料的Sciie基准,我们希望它将导致社区从事这项挑战任务的更多研究。我们的代码和数据可在以下网址提供:https://github.com/jerry3027/polyie。
^应优先考虑至少18岁以下的怀孕青少年的疫苗;但也可以在3-18岁的儿童中使用。根据《健康与安全法》第124172条,三岁以下的孕妇或儿童可能只接受含量水平或不含汞的疫苗剂量。
26 星期四 26 星期日 26 星期日 26 星期三 26 星期五 2 26 星期一 26 星期三 26 星期六 26 星期二 26 星期四 26 星期日 26 星期二 圣诞节
应对农业领域的紧迫挑战需要迅速推进育种计划,特别是对于葡萄等多年生作物。我们超越了传统的双亲数量性状基因座 (QTL) 定位,进行了一项全基因组关联研究 (GWAS),涵盖了智利育种计划中的 588 个葡萄品种,跨越三个季节并测试了 13 个关键的产量相关性状。一个强有力的候选基因 Vitvi11g000454 位于第 11 号染色体上,与植物通过茉莉酸信号对生物和非生物胁迫的反应有关,与浆果宽度有关,并有可能在葡萄育种中提高浆果大小。我们还在 2、4、9、11、15、18 和 19 号染色体上定位了与采后性状相关的新型 QTL,拓宽了我们对决定果实采后行为(包括腐烂、皱缩和重量减轻)的遗传复杂性的了解。利用基因本体注释,我们在性状和仔细研究的候选基因之间进行了比较,为未来植物育种中的性状特征识别工作奠定了坚实的基础。我们还强调了在 GWAS 分析中仔细考虑响应变量选择的重要性,因为在我们的研究中使用最佳线性无偏估计量 (BLUEs) 校正可能导致葡萄性状中一些常见 QTL 被抑制。我们的研究结果强调了开拓长期保存性状的非破坏性评估技术的必要性,为葡萄育种者和栽培者提供了改善采后鲜食葡萄质量和减少浪费的见解。
广泛用作航空航天和核工程(在裂变和聚变应用)的结构材料、金属加工工具和坩埚,以及腐蚀环境中的化学反应容器。最近,所有组成元素含量相当的复杂浓缩合金 (CCA) 已成为 RA 研究的一个新课题 [3, 4, 5, 6]。从纯金属到 CCA 的转变通常会改善材料性能和/或出现新的有益工程特性。在过去的 15-20 年里,这类合金一直是深入研究的主题。如今广泛讨论的高熵合金 [7, 8, 9] 是 CCA 的一个特例,其中合金元素的数量等于或超过五种。但即使涉及的元素数量只有三四种,与纯金属相比,高构型熵和严重的晶格畸变也会导致 CCA 材料性质发生质的变化。Senkov 等人。 [3, 10] 研究了一种 W 0.25 Ta 0.25 Mo 0.25 Nb 0.25 合金,该合金在高温下表现出有趣的力学性能:在 850K 至 1800K 的温度范围内,屈服应力极高(约 600 MPa)并且似乎几乎与温度无关。人们认为造成这一不寻常特征的主要机制之一是 CCA 的局部晶格畸变 (LLD) [7, 11],它抑制了位错运动。根据这一推测,在 Zou 等人最近的研究中 [12],他们通过高分辨率透射电子显微镜证实了 Nb-Mo-Ta-W 耐火合金中的局部畸变。经典分子动力学 (MD) 模拟是研究 CCA 特性最有力的工具之一。这种建模的关键部分是原子间势。因此,为此类系统开发可靠且广泛适用的势能是计算材料科学中的一项基本任务。对于耐火 CCA,Zhou 等人 [13, 14] 报道了一类可扩展至合金的嵌入式原子方法 (EAM) 势能。2013 年,Lin 等人 [15] 将 Zr 和 Nb 组分纳入该组势能中。这些势能被广泛用于探测耐火 CCA 中缺陷的行为 [16, 17, 18, 19, 20]。然而,由于可预测性较差,使用该模型获得的模拟结果最多只能视为定性的——即使对于纯金属也是如此。例如,对于纯钨,Zhou 的势能严重高估了熔化温度(比实验值高出近 1000K)[21],并且与从头算计算结果相比,显示出错误的螺位错 Peierls 势垒特征(峰值和形状)[22]。对于纯钼,Zhou 的模型给出了螺位错的极化核心