我们必须想象一个这样的公园——一个包容多种交叉文化的公园,一个连接即时数字名人、追随者、制造者、消费者、化身、机器人的世界——换句话说,连接新生的日常公民。矛盾的是,通过这种分层,就像过去的迭代一样,公共公园成为个人在多个领域寻求自我表达的出口。在最基本的形式中,自拍就是这种表达的活动,它能够生成连接物理环境和模拟环境的协议。虽然“自拍”被认为是一种看似最近的现象,但它是自拍肖像悠久历史中的最新发展。自拍随着技术的巨大变化而演变,但从某种形式上讲,自摄影诞生以来,它们已经伴随我们一个多世纪了。安迪·沃霍尔、科林·鲍威尔和艾未未都尝试过各种形式的自拍。它们的灵活性和易用性继续建立在摄影的长期轨迹之上,作为自我记录、与一群人一起捕捉时光的机会或独自表达自我的愿望,它们通常是由在特定地点感觉良好而引发的。随着社交媒体的出现,它们的受欢迎程度正在增长,因为它们可以立即
对于所有新建筑和重大改进,最低楼层以下仅用于停放车辆、建筑物通道或储存(非地下室)且易受洪水侵袭的完全封闭区域应设计为允许洪水进出,从而自动平衡外墙上的静水洪水力。满足此要求的设计必须经过注册专业工程师或建筑师认证,或满足或超过以下最低标准:每平方英尺易受洪水侵袭的封闭区域应至少设置两个开口,总净面积不少于一平方英寸。所有开口的底部不得高出地面一英尺。开口可配备屏风、百叶窗、阀门或其他覆盖物或装置,但前提是它们允许洪水自动进出。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
致电网站:https://www.spiritslovenia.si/razpis/382操作的目的和目标:在开发高度可回收的面板的研发项目中,基于粘合剂的洁净室墙壁,基于粘合剂的主要成分将在自然成分中构成的既有智能,以构成他们的研究范围,以至于将其友好地融合了一项环境,以至于将其融合了一项环境,以至于将其融合了创业的努力,以至于创新的创业能力,洁净室中安装面板的无菌技术标准。高度可回收的面板墙的项目带来了出色的结果,会影响可持续建筑。墙壁将是可回收的,用天然材料制成,其生产中使用的粘合剂将包含65-80%的天然原材料。洁净室的分区墙将用于制药行业,医疗保健,微生物学,食品和核工业,纳米技术,微电子学和研究机构。这意味着基于研发项目,我们将大胆地支持这些苛刻设施的可持续建设。Cleangrad与有线有线公司之间的合作已经进行了20年,并在2002年成立了Cleangrad Company之后不久就开始了Mitol在Cleangrad开发技术人员的主动性中开发了第一个“ 2C PU”粘合剂,用于将Sandwich Panels与Cleanroom in Cleanroom生产清洁室的隔离式面板结合在一起。
austlii.edu.au › UNSWLawJl › 4.pdf PDF 1991 年 4 月 30 日 — 1991 年 4 月 30 日提议在道格拉斯飞机公司发行证券... Ipp 或 Bryson JJ 关于律师冲突中中国墙的可靠性
摘要:微机电系统 (MEMS) 的最新进展为生物和化学分析物的无标记检测 (LFD) 带来了前所未有的前景。此外,这些 LFD 技术提供了设计高分辨率和高通量传感平台的潜力,并有望进一步小型化。然而,将生物分子固定在无机表面上而不影响其传感能力对于设计这些 LFD 技术至关重要。目前,自组装单层 (SAM) 的共价功能化为提高检测灵敏度、可重复性、表面稳定性和结合位点与传感器表面的接近度提供了有希望的途径。在此,我们研究了使用化学气相沉积 3-(缩水甘油氧基丙基)-三甲氧基硅烷 (GOPTS) 作为多功能 SAM 对 SiO 2 微悬臂阵列 (MCA) 进行共价功能化,以实现具有皮克灵敏度的碳水化合物-凝集素相互作用。此外,我们证明了使用传统压电微阵列打印机技术将聚糖固定到 MCA 是可行的。鉴于糖组的复杂性,以高通量方式发现样本的能力使我们的 MCA 成为分析碳水化合物-蛋白质相互作用的稳健、无标记和可扩展的方法。这些发现表明,GOPTS SAM 为 MEMS 提供了合适的生物功能化途径,并提供了可以扩展到各种 LFD 技术以实现真正高通量和高分辨率平台的原理证明。
Boris Rodenak-Kladniew 1,*, Rocío Gambaro 2 , José S. Cisneros 3 , Cristián Huck-Iriart 4,5 , Gisel Padula 2,6 , Guillermo R. Castro 7,8 , Cecilia Y. Chain 3 , Germán A. Islan 9,* 1 拉普拉塔生化研究所 (INIBIOLP),CONICET-UNLP,CCT-La Plata,医学科学学院,拉普拉塔,阿根廷 2 兽医遗传学研究所 (IGEVET,UNLP-CONICET LA PLATA),兽医科学学院 UNLP,拉普拉塔,阿根廷 3 理论与应用物理化学研究所 (CONICET-UNLP),拉普拉塔,布宜诺斯艾利斯,阿根廷 4 新兴技术和应用科学研究所 (ITECA),UNSAM-CONICET,科学技术学院 (ECyT),晶体学实验室应用数学系(LCA),Miguelete 校区,(1650)圣马丁,布宜诺斯艾利斯,阿根廷 5 ALBA 同步加速器光源,Carrer de la Llum 2–26,Cerdanyola del Vallès,08290 巴塞罗那,西班牙 6 自然科学学院和博物馆,UNLP,阿根廷。 7 马克斯普朗克结构生物学、化学和罗萨里奥分子生物物理学实验室(MPLbioR、UNR-MPIbpC)、马克斯普朗克生物物理化学研究所合作实验室(MPIbpC、MPG)、罗萨里奥国立大学跨学科研究中心(CEI),罗萨里奥,阿根廷 8 纳米医学研究单位(Nanomed)、自然与人文科学中心(CCNH)、ABC 联邦大学(UFABC),圣安德烈,SP,巴西。 9 阿根廷布宜诺斯艾利斯拉普拉塔,工业发酵研究与开发中心(CINDEFI),纳米生物材料实验室,精确科学学院化学系,CONICET-UNLP(CCT La Plata)。通讯地址:germanislan@biol.unlp.edu.ar (GAI); brodenak@med.unlp.edu.ar (BR-K.)
由于具有原位合金化能力,激光束定向能量沉积已成为一种越来越受欢迎的材料发现先进制造技术。在本研究中,我们利用增材制造支持的高通量材料发现方法来探索跨度为 0 ≤ x ≤ 21 at.% 的分级 W x(CoCrFeMnNi)100-x 样品的成分空间。除了微观结构和机械特性外,还对 W 20(CoCrFeMnNi)80 成分进行了同步加速器高速 X 射线计算机辅助断层扫描,以可视化熔化动力学、粉末-激光相互作用和先前固结材料的重熔效应。结果表明,尽管构型熵很高,但当 W 浓度 > 6 at.% 时会形成 Fe 7 W 6 金属间相。当 W 浓度 > 10 at.% 时也会出现未结合的 W 颗粒,同时在 W/基质界面处出现 Fe 7 W 6 溶解带,硬度值大于 400 HV。主要强化机制归因于 Fe 7 W 6 和 W 相作为金属基复合材料的强化。重熔过程中的原位高速 x 射线成像显示,额外的激光通过并未促进 Fe 7 W 6 或 W 相的进一步混合,这表明,尽管 W 溶解到 Fe 7 W 6 相中在热力学上是有利的,但在动力学上受到金属间相的厚度/扩散率以及激光工艺的快速凝固的限制。