高价值支付系统 (HVPS) 通常流动性密集,因为支付请求不可分割且按总额结算。找到处理付款的正确顺序以最大化这些系统的流动性效率是一个 NP 难组合优化问题,量子算法可能能够在有意义的规模上解决该问题。我们开发了一种算法,并在混合量子退火求解器上运行它,以找到一种支付顺序,以减少所需的系统流动性量,而不会大幅增加支付延迟。尽管当今量子计算机的大小和速度有限,但当使用 30 天的交易数据样本应用于加拿大 HVPS 时,我们的算法提供了可量化的效率改进。通过在每批 70 笔付款进入队列时对其进行重新排序,我们平均每天节省了 2.4 亿加元的流动性,结算延迟约为 90 秒。在样本中的几天里,流动性节省超过 10 亿加元。该算法可以作为集中式预处理器纳入现有的 HVPS 中,而无需对其风险管理模型进行根本性的改变。
在经典迭代线性系统求解器中,预处理是处理病态线性系统最广泛和最有效的方法。我们引入了一种称为快速求逆的量子原语,可用作求解量子线性系统的预处理器。快速求逆的关键思想是通过量子电路直接对矩阵求逆进行块编码,该电路通过经典算法实现特征值的求逆。我们展示了预处理线性系统求解器在计算量子多体系统的单粒子格林函数中的应用,该函数广泛用于量子物理、化学和材料科学。我们分析了三种情况下的复杂性:哈伯德模型、平面波对偶基中的量子多体哈密顿量和施温格模型。我们还提供了一种在固定粒子流形内进行二次量化格林函数计算的方法,并指出这种方法可能对更广泛的模拟有价值。除了求解线性系统之外,快速求逆还使我们能够开发用于计算矩阵函数的快速算法,例如高效准备吉布斯态。我们分别基于轮廓积分公式和逆变换介绍了两种高效的此类任务方法。
2.1 参考应用程序 第一个参考应用程序 Nek5000 (C1) [1] 是一个基于谱元法 (SEM) 的流体和传热求解器,具有悠久的开发历史。在 20 世纪 90 年代中期,它是第一个可用于分布式内存计算机的代码,并于 1999 年因算法质量和持续并行性能而获得 Gordon Bell 奖。良好的缩放特性是通过将基于 SEM 的域分解为一组不相交的谱子域来实现的,这允许将全局运算符拆分为一组局部执行的密集矩阵-矩阵乘法,并结合通过直接刚度求和的通信步骤。这种域分解也可用于提高模拟可靠性,因为可以在运行过程中动态修改域分解以最小化估计的计算误差。在 EXCELLERAT 中,KTH 将致力于 Nek5000 的开发,重点关注与 WP4 服务数量相对应的多个方面,例如:使用伴随算法(内在优化方法)进行自适应网格细化、不确定性量化(数值方法、数据缩减算法)、使用加速器(移植到新架构、节点级性能工程)或后处理数据缩减(现场可视化)。它涵盖了从预处理阶段开始的整个模拟周期,其中必须生成相对复杂几何形状的粗六边形网格(网格划分算法)。在模拟阶段,我们将专注于非一致网格的压力预处理器(数值方法)和通信内核(系统级性能工程)。
2.1 参考应用程序第一个参考应用程序 Nek5000 (C1) [1] 是一个基于谱元法 (SEM) 的流体和传热求解器,具有悠久的开发历史。在 20 世纪 90 年代中期,它是第一个可用于分布式内存计算机的代码,并于 1999 年因算法质量和持续的并行性能而获得了戈登贝尔奖。良好的扩展属性是通过将基于 SEM 的域分解为一系列不相交的谱子域来实现的,这允许将全局算子分解为一组局部执行的密集矩阵-矩阵乘法,并结合通过直接刚度求和的通信步骤。这种域分解也可用于提高模拟的可靠性,因为可以在运行过程中动态修改域分解以最小化估计的计算误差。在 EXCELLERAT 中,KTH 将致力于 Nek5000 的开发,重点关注与 WP4 服务数量相对应的多个方面,例如:使用伴随算法(内在优化方法)进行自适应网格细化、不确定性量化(数值方法、数据缩减算法)、使用加速器(移植到新架构、节点级性能工程)或后处理数据缩减(现场可视化)。它涵盖了从预处理阶段开始的整个模拟周期,其中必须生成相对复杂几何的粗六边形网格(网格划分算法)。在模拟阶段,我们将专注于非一致网格的压力预处理器(数值方法)和通信内核(系统级性能工程)。
I. 简介 本公告描述了一个名为“宽带通用 RF 接收器的模拟预处理器和其他推动器”的技术领域,属于海军和海军陆战队科学技术长期广泛机构公告 N00014-23-S-B001,可在 https://www.onr.navy.mil/work-with-us/funding-opportunities/announcements 上找到。提案的提交、评估以及研究补助金和合同的发放将按照上述长期广泛机构公告中所述进行。本公告的目的是让科学界关注 (1) 待研究领域,以及 (2) 提交白皮书和完整提案的计划时间表。本次电话会议没有计划举办行业日或专题研讨会。II。主题描述 ONR 代码 312 组合(特别是题为“混合信号系统的低温电子技术”的部分)寻求适合发现和发明资助(TRL ≤ 4)的提案,用于概念验证、开发和演示单个性能优化的组件技术,以及概念验证和演示与下一代通用宽带 RF 接收器相关的新系统架构。整个 ONR 计划针对的模块化系统将证明可以为战术边缘的决策者提供准确、完整和及时的态势感知。因此,即使本地环境受到几乎任何来源的大量大声干扰源的污染,接收器也必须以最佳性能运行。几代人都渴望此功能,广泛涵盖从窄带通信系统的全双工操作到具有恒定高灵敏度的完全可生存的同时发射和接收 (STAR) 系统的一切。所需的抗干扰和防欺骗系统将由适当大小、结构简单、固有超宽带、软件定义组件组合而成;使接收器能够实时学习和适应当前信号环境。长期目标是实现通用系统,能够在适当调整天线和数字处理后端以适应特定任务和平台后,提供部署在 RF 频谱任何位置的任何 EW/Comms 功能集。这将降低包括物流成本在内的终生成本。软件定义的多功能系统的简单版本已经比单一功能硬件越来越受欢迎,部分原因是它们的适应性使其过时速度更慢。展望未来,与当今传统系统中占主导地位的众多单一功能、紧密集成的链条相比,需要更少的军用独特部件,数量更多,数量更少,从而降低物流和终生成本。简单、模块化结构更易于理解、操作、诊断和维修,而且每次升级几个组件更经济实惠。这种接收器的 3 个主要功能部分是:A)通过天线结构收集所需电磁频谱中的信号,对整个信号进行任何操作,以及传送