近来,使用机器学习模型和技术预测经济变量的情况越来越多,其动机是它们比线性模型具有更好的性能。尽管线性模型具有相当大的解释能力的优势,但近年来,人们加大了努力,使机器学习模型更具解释性。本文进行了测试,以确定基于机器学习算法的模型在预测非正规经济规模方面是否比线性模型具有更好的性能。本文还探讨了机器学习模型检测到的最重要的这种规模的决定因素是否与文献中基于传统线性模型检测到的因素相同。为此,从 2004 年到 2014 年,收集并处理了 122 个国家的观测数据。接下来,使用 11 个模型(四个线性模型和七个基于机器学习算法的模型)来预测这些国家非正规经济的规模。使用 Shapley 值计算了预测变量在确定机器学习算法产生的结果中的相对重要性。结果表明:(i)基于机器学习算法的模型比线性模型具有更好的预测性能;(ii)通过 Shapley 值检测到的主要决定因素与文献中使用传统线性模型检测到的主要决定因素一致。
采用非实验室模型摘要:本文提出了在初级保健(PHC)中使用心血管风险(CVR)分层工具的考虑,重点关注非实验室模型作为实验室预测的替代行为。这一目标是基于使用横断面和探索性方法的实证研究来反思的,重点关注米纳斯吉拉斯州一个中等城市中患有合并症(高血压和/或糖尿病)且没有记录心血管问题的成年人口(40 至 74 岁之间)的两种量表的行为。在这项名为“CardioRisco”项目中,研究人员评估了基于胆固醇信息的 Framingham 全球风险评分所进行的 CVR 分层与使用身体质量指数而非血清数据的 HEARTS 计算器非实验室版本之间的一致程度。本文对研究的总体结果进行了分析,其中,对于所构成的样本,在分层之间发现了最小一致性,并提出了关于在 PHC 背景下管理 CVR 的建议,强调了对高风险患者(例如糖尿病患者)进行全面评估的重要性。
世纪,在量子级别上开发有效的工具是相当多的,以提高数据的确定性和互操作性。量子计算机以量子力学为基本的原理,即使我们正处于开发的开始,仍然有望带来惊喜。Quantum计算机是唯一可以实现指数加速经典compoter的计算模型。量子计算机当前面临的主要挑战包括增加或减少给定系统的量子数量,同时管理以保留量置的属性和量子系统的纠缠状态,以通过适当的量子算法执行数据操作。在本文中,我们将概述量子计算机,将描述加密的演变以及与量子计算机的计算性能,效率和预测性建模有关的理论。原型和量子模拟算法将提出改善新量子宇宙的寿命。
摘要:雷帕霉素 (mTOR) 激酶的机制靶点是促进健康和延长寿命的首要药物靶点之一。除雷帕霉素外,只有少数其他 mTOR 抑制剂被开发出来并被证明能够减缓衰老。我们使用机器学习来预测针对 mTOR 的新型小分子。我们选择了一种小分子 TKA001,基于对高靶向概率、低毒性、良好的物理化学性质和更好的 ADMET 特征的计算机预测。我们通过分子对接和分子动力学对 TKA001 结合进行了计算机建模。TKA001 在体外可有效抑制 TOR 复合物 1 和 2 信号传导。此外,TKA001 在体外可抑制人类癌细胞增殖并延长秀丽隐杆线虫的寿命,这表明 TKA001 能够在体内减缓衰老。
定向金属沉积 (DMD) 是一种很有前途的金属增材制造技术,其中零件是通过使用沿预定义轨迹移动的激光束融合注入的金属粉末颗粒来制造的。刀具路径通常包括曲线或边缘部分,机器轴需要相应地减速和加速。因此,局部施加的激光能量和粉末密度在沉积过程中会发生变化,导致局部过度沉积和过热。这些偏差还受到刀具路径几何形状和工艺持续时间的影响:先前的沉积可能会在时间和空间上影响相近的刀具路径段,导致局部热量积聚,并形成与使用相同参数沉积的其他段中产生的轮廓和微观结构不同的轮廓和微观结构,这是由于几何形状和温度相关的集水轮廓所致。为了防止这些现象,需要轻量级和可扩展的模型来预测可变刀具路径的工艺行为。在本文中,我们提出了一种基于人工智能的方法来处理 Inconel 718 的工艺复杂性和多种刀具路径变化。考虑到先前定义的刀具路径,使用人工神经网络 (ANN) 来预测沉积高度。通过打印包含多个曲率和几何形状的随机刀具路径,生成了训练数据。基于训练后的模型,可以成功预测整个刀具路径的显著局部几何偏差,并且可以通过相应地调整工艺参数来预测。
莫桑比克银行货币政策委员会 (MPC) 决定将 MIMO 政策利率维持在 17.25% 不变。这一决定的基础是,尽管与通胀预测相关的一些风险已经实现并加剧,特别是自然灾害的发生和公共支出压力的增加,但中期通胀前景仍将维持个位数。与通胀预测相关的风险和不确定性已经加剧。在国内,近期气候冲击对商品和服务价格的短期影响以及公共支出压力增加的不确定性尤其突出。在外部方面,全球金融市场波动和旷日持久的俄乌冲突的影响的不确定性尤为突出。预计中期通胀率将为个位数。2023 年 2 月,年通胀率从 9.78% 加速至 10.30%,主要原因是气候冲击导致食品价格上涨以及管制价格上涨。同时,核心通胀率(不包括水果蔬菜和管制价格)保持稳定。中期通胀率预计将保持在个位数以内,这得益于货币政策委员会采取的措施、汇率稳定和全球市场大宗商品价格下跌趋势。预计经济增长温和。这些预测主要反映了当前全球金融状况紧张,导致全球经济活动扩张放缓,从而导致全球市场出口商品价格下降。不包括鲁伍马盆地正在进行的能源项目,预计国内生产总值增长将下降,这主要是由于近期气候冲击对农业生产和各种基础设施的影响。国内公共债务恶化。国内公共债务(不包括贷款和租赁协议以及逾期债务)为 3013 亿梅蒂卡尔,比 2022 年 12 月增加 261 亿梅蒂卡尔。货币政策委员会将继续监测与通胀预测相关的风险和不确定性的发展,并将毫不犹豫地采取必要的纠正措施。下一次定期货币政策委员会会议定于 2023 年 5 月 31 日举行。
环境,建立内部世界模型表示,做出决策并采取措施[9,50]。,尽管数十年来在学术界和工业上做出了巨大的努力,但他们的部署仍限于某些杂物或场景,并且不能在世界上无缝地应用。一个关键原因是在结构化自主驾驶系统中学习模型的概括能力有限。通常,感知模型会面临概括到不同环境的挑战,随着地理位置,传感器配置,天气条件,开放式对象等的变化。;预测和计划模型无法推广到具有罕见的sce narios和不同驾驶意图的非确定性期货[2,16,54]。是由人类学习如何感知和刺激世界的动机[27,28,49],我们主张采用驾驶视频作为通用界面,将其推广到具有动态期货的各种环境。基于此,首选驱动视频预测模型以完全捕获有关驾驶场景的世界知识(图1)。通过预测未来,视频预测因子本质上了解了自主驾驶的两个重要方面:世界如何运作以及如何在野外安全地操纵。最近,社区已开始采用视频作为代表各种机器人任务的观察行为和行动的接口[11]。对于诸如经典视频预测和机器人技术等领域,视频背景大多是静态的,机器人的运动很慢,并且视频的分解很低。相比之下,对于驾驶场景 - iOS,它与室外环境高度斗争,代理人涵盖了更大的动作,以及涵盖众多视图的感觉分辨率。这些区别导致了自主驾驶应用的重大挑战。幸运的是,在驾驶领域中开发视频预测模型[4、15、19、23、23、25、33、38、45、47]。尽管在预测质量方面取得了令人鼓舞的进展,但这些尝试并未像经典的机器人任务(例如,操作)那样实现概括能力,仅限于有限的场景,例如流量密度低[4]的高速公路[4]和小型数据集[15,23,33,33,33,45,45,47],或者在环境方面进行不同的条件,以使38个条件(33,45,47)的差异(33,45,47),以使3个条件(33,45,47)的差异(33,45,47),以使3个条件(33,45,47)的差异[3](33,45,47),以下情况下的情况[3](33,33,45,47),这是3次差异。如何揭示视频预测模型的驾驶潜力仍然很少探索。以上面的讨论为动机,我们旨在构建一个自动驾驶的视频预测模型,能够概括为新的条件和环境。为此,我们必须回答以下问题:(1)可以以可行且可扩展的方式获得哪些数据?(2)我们如何制定一个预测模型来捕获动态场景的复杂演化?(3)我们如何将(基础)模型应用于下游任务?
腹腔镜胆囊切除术 (LC) 是切除胆囊的标准手术。虽然该手术已发展成为一种相对安全且可耐受的日间手术,但有时可能会很困难,并且可能会出现并发症。复杂的胆结石疾病,如胆囊炎或胆结石性胰腺炎,是增加 LC 技术难度的危险因素。虽然可以对手术难度进行术前预测,但围手术期发现可能会令人惊讶。使用基于 AI 的模型了解手术场景的难度对于对手术性能进行基准测试和改进手术室规划非常重要。本研究旨在开发一种深度学习 (DL) 来预测腹腔镜胆囊切除术在特定手术发现上的难度。基于 Nassar 评分使用了难度分级量表。为了训练 DL 网络,从录制的视频中提取了帧。所有帧均标记为“胆囊”难度 1-3 级和“粘连”难度 1-3 级。排除由体外图像组成或胆囊不可见的帧。总共有 26.483 帧。ResNet 用作模型的主干。调整超参数以改善模型结果。多类和二元分类网络都经过了训练。训练用于分类胆囊难度(3 级)的网络比训练用于分类粘连难度的网络表现更好(准确率 74%)。可以对胆囊炎进行分类,准确率为 91%,对简单病例进行分类,准确率为 87%。本研究结果可作为进一步研究 LC 难度分类的起点。这是提高对手术场景理解并为 LC 外科医生提供基准的第一步。
Norikazu HIROSE 博士 早稻田大学运动科学系教授 日本运动训练学会 日本训练科学学会等 著作:《运动训练科学》,文光堂(2019)等 研究领域:运动训练
Map Choice................................................................................................................................................17 River Gauge............................................................................................................................................... 17 Hazards...................................................................................................................................................... 20 Precipitation Estimate (water.noaa.gov/precip).........................................................................................20 National Water Model................................................................................................................................22 Flood Inundation (water.noaa.gov/fim)..................................................................................................... 27 National Snow Analysis.............................................................................................................................30 Administrative Boundaries........................................................................................................................ 32 2.3.NWPS Menu Pulldowns........................................................................................................................... 32 3.The NWPS API................................................................................................................................................ 34 4.Precipitation Data............................................................................................................................................ 35 5.Appendix A: About the Precipitation Analysis............................................................................................40 6.Appendix B: QPE Data Formats....................................................................................................................44 7.Appendix C: Use of New Precipitation File Formats in Common GIS Software...................................... 49 8.Appendix D: National Forecast and Observed Shapefile Downloads.........................................................51 9.Appendix E: Data and Web Services Catalog...............................................................................................52 10.Appendix F: Legacy Static Hydrographs.................................................................................................... 59 11.附录G:NWPS河的观测和预测图标.............................................................................................................................................................................................................................................................................................................................................................................................................
