关于Zscaler Zscaler(NASDAQ:ZS),可以加速数字转换,以使客户更加敏捷,高效,弹性和安全。ZScaler Zero Trust Exchange通过将任何位置的用户,设备和应用程序安全地连接到网络攻击和数据丢失,以保护数千个客户免受网络攻击和数据丢失。分布在全球150多个数据中心上,基于SSE的零信任交换是世界上最大的内联云安全平台。在zscaler.com上了解更多信息,或在Twitter @zscaler上关注我们。
患者,他们的社交网络,他们的家庭以及他们的就业地点都受到中风的影响。在印度,这是死亡的主要原因之一。由于医学的变化,现在有可能使用机器学习预测中风[1]。机器学习算法有助于评估数据并产生精确的预测[2]。大多数较早的中风研究都集中在预言心脏病发作上。脑部中风几乎没有引起注意[3]。机器学习算法对于提供准确的分析和进行准确的预测很有用[4]。心率预测一直是先前研究的主要重点[5]。中风研究并未得到太多研究。研究背后的想法是使用机器学习预测中风的发生率[6]。
说明管道是改善处理器速度的最杰出技术之一;尽管如此,这些管道的阶段仍在不断面对由嵌套条件分支引起的摊位。在执行嵌套条件分支的过程中,跑步分支的行为取决于先前的历史记录信息;因此,这些分支在降低条件分支之间分支预测因子的预测准确性方面具有最大的影响。这项研究的目的是通过引入结合本地和全球预测技术的分支预测变量的硬件模型来减少由相关分支引起的失速周期。此预测因子将合金预测变量的预测特性与相关预测指标的预测特性相结合。在VHDL中实现的预测器设计(非常高速IC硬件说明语言)已插入先前设计的MIPS(无连锁管道管道式阶段的微处理器)中,并通过使用选择排序的算法来确认程序的预测准确性,以将不同组合的100个不同组合的输入数量分类。
Ayse Tosun 1、Ayse Bener 2、Resat Kale 3 1,2 博阿齐奇大学计算机工程系软件研究实验室(SoftLab),邮编 34342,伊斯坦布尔,土耳其 3 Turkcell 技术公司,盖布泽,伊斯坦布尔,土耳其 1 ayse.tosun@boun.edu.tr,2 bener@boun.edu.tr,3 resat.kale@turkcellteknoloji.com.tr 摘要 软件缺陷预测旨在通过引导测试人员完成软件系统中易出现缺陷的部分来减少软件测试工作量。缺陷预测器被广泛用于组织中以预测缺陷,从而节省时间和精力,作为手动代码审查等其他技术的替代方案。在现实环境中应用缺陷预测模型很困难,因为它需要来自过去项目的软件度量和缺陷数据来预测新项目的缺陷倾向。另一方面,它非常实用,因为它易于应用,可以用更少的时间检测出缺陷并减少测试工作量。我们在一年的时间内为一家电信公司建立了一个基于学习的缺陷预测模型。在这项研究中,我们简要解释了我们的模型,展示了它的收益并描述了我们如何在公司中实施该模型。此外,我们将我们的模型的性能与试点项目中应用的另一种测试策略的性能进行了比较,该项目实施了一种名为团队软件流程 (TSP) 的新流程。我们的结果表明,缺陷预测器可用作新流程实施过程中的支持工具,预测 75% 的代码缺陷,并减少测试时间,而通过代码审查和正式检查表等更耗费劳动力的策略检测到的代码缺陷率为 25%。
植入式脑机接口的一个关键问题是它们需要极高的能效。降低能耗的一种方法是使用这些设备中嵌入的处理器提供的低功耗模式。我们提出了一种技术来预测感兴趣的神经元活动何时可能发生,以便处理器在这些时间以标称工作频率运行,否则置于低功耗模式。为了实现这一点,我们发现分支预测器也可以预测大脑活动。我们对清醒和麻醉的老鼠进行脑部手术,并评估几种分支预测器预测小脑神经元活动的能力。我们发现感知器分支预测器可以预测小脑活动,准确率高达 85%。因此,我们利用分支预测器来指示何时在低功耗和正常操作模式之间转换,节省高达 59% 的处理器能量。
漏洞预测器根据执行代码提交以修复漏洞时可用的信息进行训练。此信息是代码更改,包括注释和提交注释。借助提交信息,Veracode 可以预测它是否与安全相关。此预测器可以每天大规模运行,扫描 Veracode 客户使用的所有开源软件包存储库。这使 Veracode 客户有机会更新软件包以修复他们的软件,无论漏洞是否在公共漏洞数据库中。
•是通过S'训练的学习模型•火车测试拆分的想法独立验证集纠正预测错误•无论预测器有多糟糕,都无偏见;一个好的模型降低方差
摘要 在药物副作用发生之前进行预测是降低药物相关住院率和改善药物发现过程的关键任务。副作用的自动预测器通常无法处理药物的结构,从而导致信息丢失。近年来,图神经网络取得了巨大的成功,这要归功于它们能够利用图结构和标签所传达的信息。这些模型已被用于各种生物学应用,其中包括在大型知识图上预测药物副作用。利用编码药物结构的分子图代表了一种新方法,其中问题被表述为多类多标签图重点分类。我们开发了一种方法来执行此任务,使用递归图神经网络,并从可自由访问且完善的数据源构建数据集。结果表明,与以前可用的预测器相比,我们的方法在许多参数和指标下具有更好的分类能力。
摘要:机载激光扫描 (ALS) 采集在美国西部提供零碎覆盖,因为采集工作由各个项目区域的当地管理人员组织。在本研究中,我们分析了有助于制定区域战略的不同因素,以使用已完成的 ALS 数据采集信息并快速开发新 ALS 项目区域中多种森林属性的地图。这项研究位于美国俄勒冈州,分析了森林结构属性之间的差异:(1) 合成(即未校准)和校准预测,(2) 参数线性和半参数模型,以及 (3) 使用针对现场测量区域内的点云计算的预测因子开发的模型,即“点云预测因子”,以及使用从预栅格化层中提取的预测因子开发的模型,即“栅格化预测因子”。所考虑的森林结构属性包括地上生物量、倒地木质生物量、冠层容重、冠层高度、冠层基高和冠层燃料负荷。我们的研究结果表明,如果不进行校准,半参数模型的表现优于参数模型。但是,校准在减少参数模型偏差方面效果显著,但对半参数模型的影响很小,并且一旦进行校准,参数模型和半参数模型之间的差异对于所有响应都可以忽略不计。此外,发现使用点云预测器的模型和使用栅格化预测器的模型之间的差异很小。我们得出结论,应用半参数模型和栅格化预测器的方法是合理的,它代表了最简单的工作流程并导致最快速的结果,即使不进行校准,准确性或精度的损失也很小。