越来越多的癫痫患者遭受着癫痫发作的痛苦,有效预测癫痫发作可以改善他们的生活质量。为了获得高灵敏度的癫痫发作预测,当前的研究通常需要复杂的特征提取操作,这严重依赖于人工经验(或领域知识)并且具有很强的主观性。为了解决这些问题,本文提出了一种基于长短期记忆网络(LSTM)的端到端癫痫发作预测方法。在新方法中,仅提取原始脑电图(EEG)信号的伽马波段作为网络输入直接进行癫痫发作预测,从而避免了主观和昂贵的特征设计过程。尽管方法简单,但在从脑电图信号中识别发作前期时,所提出的方法在波士顿-麻省理工学院儿童医院(CHB-MIT)头皮脑电图数据库上分别实现了 91.76% 的平均灵敏度和 0.29/h 的错误预测率(FPR)。此外,与仅考虑发作前和发作间期脑电图分类的传统方法不同,我们在所提出的方法中引入了发作后阶段作为额外类别。因此,癫痫发作预测的性能进一步提高,获得了更高的灵敏度 92.17% 和较低的 FPR 0.27/h。平均预警时间为 44.46 分钟,这表明该预测方法为患者采取干预措施预留了足够的时间。
在监督学习问题中的摘要,鉴于预测的值是某些训练有素的模型的输出,我们如何量化围绕此预测的不确定性?无分布的预测推论旨在围绕此输出构建预测间隔,有效覆盖范围不依赖于数据分布或模型培训算法的性质的假设。在该领域的现有方法,包括保形预测和折刀+,提供了略有保证的理论保证(即,在培训和测试数据中平均而言)。相比之下,培训条件覆盖范围是更强的有效性概念,可确保大多数训练数据的测试点的预测覆盖范围,因此在实践中是更理想的属性。Vovk [2012]表明了培训条件覆盖范围,以持有分裂的共形方法,但Bian和Barber [2023]的最新工作证明,对于没有进一步假设的完整的子状和折刀+方法,无法使用这种有效性保证。在本文中,我们表明算法稳定性的假设可确保训练条件覆盖属性具有完整的保形和折刀+方法。
1 新疆大学可再生能源发电与并网教育部工程研究中心,乌鲁木齐 830049,新疆,中华人民共和国。2 新疆电力有限公司电力科学研究院,乌鲁木齐 830049,新疆,中华人民共和国。通讯作者:吴嘉辉 (wjh229@xju.edu.cn)。摘要:随着储能电站领域的蓬勃发展,电池系统状态和故障的预测受到广泛关注。电压作为各类电池故障的主要指示参数,准确预测电压异常对确保电池系统的安全运行至关重要。本研究采用基于 Informer 的预测方法,利用贝叶斯优化算法对神经网络模型的超参数进行微调,从而提高储能电池电压异常预测的准确性。该方法以1分钟为采样间隔,采用一步预测,训练集占总数据的70%,将预测结果的均方根误差、均方误差和平均绝对误差分别降低至9.18mV、0.0831mV和6.708mV。还分析了实际电网运行数据在不同采样间隔和数据训练集比例下对预测结果的影响,从而得到一个兼顾效率和准确性的数据集。所提出的基于贝叶斯优化的方法可以实现更准确的电压异常预测。
大跨度预应力钢结构运维阶段是全寿命周期的核心环节,目前针对运维全过程安全风险变化规律的研究较少,尤其是如何有效利用运维阶段丰富的监测数据及相关安全风险信息,对结构运维全过程安全风险变化规律进行分析预测的研究,对预应力钢结构运维安全状态的判断与控制决策效率产生影响。以轮辐式索桁架为例,提出将数字孪生模型(DTM)与钢结构运维安全融合的新理念,通过现实物理空间维度与数字虚拟空间维度相结合,基于假设的分析模型,对钢结构运维安全进行综合评价。以上提出了理论框架,并从大数据的角度对某预应力钢结构进行了案例分析,评估了该方法在预应力损失及不均匀雨雪荷载工况下应用的可行性,可为运维管理提供指导并及时制定策略。
m) 电离层闪烁:电离层中电子密度的不均匀性导致无线电波的折射聚焦或散焦,并导致称为闪烁的幅度波动。电离层闪烁在地磁赤道附近最大,在中纬度地区最小。极光区也是闪烁较大的区域。强闪烁的幅度呈瑞利分布;较弱的闪烁几乎呈对数正态分布。这些波动随着频率的增加而减小,并且取决于路径几何形状、位置、季节、太阳活动和当地时间。表 2 根据 ITU-R P.531 建议书中的数据,列出了中纬度地区 VHF 和 UHF 的衰落深度数据。
GBLUP 是应用最广泛的基因组预测 (GP) 方法,由于需要求基因组关系矩阵 (GRM) 的逆,因此随着训练群体规模的增加,该方法会消耗大量且不断增加的计算资源。因此,在本研究中,我们结合随机 Haseman - Elston (HE) 回归 (RHE-reg) 和预条件共轭梯度 (PCG),开发了一种新的基因组预测方法 (RHEPCG),该方法避免了直接求 GRM 的逆。模拟结果表明,在大多数情况下,RHEPCG 不仅能达到与 GBLUP 相似的预测精度,而且还能显著减少计算时间。对于实际数据,与 GBLUP 相比,RHEPCG 对拟南芥 F2 群体的 7 个性状和高粱双色 RIL 群体的 4 个性状表现出相似或更好的预测精度。这表明 RHEPCG 是 GBLUP 的一个实用替代方案,并且具有更好的计算效率。
蛋白质是构成生命并介导其内部机制的小成分。它们由氨基酸链组成,这些分子依次定义蛋白质序列。该序列的组成决定了蛋白质的三维结构。在这条线中,蛋白质的功能与其三维结构密切相关。通过实验实验确定蛋白质序列比确定其结构或功能更便宜,更容易。这就是为什么,可用序列的数量高于已知蛋白质结构和功能的数量。深度学习最近允许像实验室实验一样准确地从其序列中快速预测蛋白质结构。最近,蛋白质结构比较工具也提高了速度,从而可以进行大规模分析。蛋白质结构通常比其序列更相似,因此比较结构可以帮助检测远处的进化关系。蛋白质已从共同祖先改编成不同物种,以及它们重复并专门从事单个生物体,以实现相似的功能。是因为这个,如果两种蛋白质在进化上相关,则它们可能会共享诸如其一般功能之类的共同特征。结合了所有这些概念,我们可以从生物体的序列中预测所有未知的蛋白质结构,寻找具有相似结构和已知功能的蛋白质,并推断可能的功能,从而获得许多功能信息。通过结合这些高级方法并与大型数据集合作,研究人员可以从现有数据有价值的信息中提取以了解进化过程。这突出了如何将有关蛋白质结构预测和比较工具的最新进步结合起来,以解锁全新的方法并从笔记本电脑中启发进化机制。
在这个瞬息万变的时代,限制气候变化和实现可持续增长的迫切需要加强全球能源转型的势头。“氢经济时代”正在走进人类的视野,朝着建立更清洁的能源系统的方向发展[1]。在此背景下,燃料电池被视为最大限度发挥氢能潜在效率优势的首选技术[2]。质子交换膜燃料电池(PEMFC)目前是轻型车辆和物料搬运车辆的领先技术,在固定式和其他应用领域也占有较小份额[3]。然而,成本和耐久性两个主要挑战限制了其大规模商业化[4]。当前PEMFC系统耐久性和可靠性不理想可能导致高维护成本[5],而非优化运行可能是导致意外停机和部件进一步退化的关键原因[6]。人们做出了许多努力来提高其耐久性:改进材料、减少退化原因、改进结构设计、实施新的监督和管理设计等。预测和健康管理 (PHM) 是一门新兴学科,最初源自基于状态的维护 [ 7 ],已被用于监测和预测 PEMFC 系统的健康状况 [ 8 , 9 ]。人们已经研究了针对 PEMFC 的各种预测方法
为了储存夏季剩余的电能供应并满足冬季的供热需求,需要一个高容量的季节性储能系统。这项工作的目的是将一种新型热化学季节性储能概念控制集成到建筑能源系统中。在这项工作中,开发了一个基于状态的模型,包括建筑物、水缓冲区和供热系统。为了阐述长期储存的影响,应用了长期天气预报并改变了供热。由于公共天气预报在几天的时间范围内是可靠的,因此使用测试参考年数据来近似公共预报期以外的天气预报。在此基础上,设计了两个模型预测控制 (MPC) 概念,以便在一年内高效运行该系统。层次结构由上级最佳发电调度 (OGS) 和下级 MPC 组成。这些概念遵循预定的长期石灰储存轨迹,并根据当前公共预测实现可能的短期收益。轨迹跟踪在目标函数或约束中制定。将新型石灰储存模块集成到建筑物的供热系统中,在现实情况下可将运营成本降低 18%,在电价波动较大的情况下,最高可降低 80%。这种降低潜力可以通过开发的控制方法充分利用,但它对控制器参数的变化、电价波动和天气数据非常敏感。此外,通过应用最佳的控制方法和参数集,可以避免更高级别的调度层次结构。
摘要背景:贝叶斯基因组预测方法的开发是为了同时将所有基因型标记与一组可用的表型进行拟合,以预测数量性状的育种值,从而考虑到性状遗传结构(标记效应分布)的差异。这些方法还为全基因组关联 (GWA) 研究提供了灵活可靠的框架。本文的目的是回顾用于 GWA 分析的贝叶斯层次和变量选择模型的发展。结果:通过同时拟合所有基因型标记,贝叶斯 GWA 方法隐含地解释了群体结构和经典单标记 GWA 的多重测试问题。使用马尔可夫链蒙特卡罗方法实现的贝叶斯 GWA 方法允许使用从后验分布获得的概率来控制错误率。使用贝叶斯方法进行的 GWA 研究的功效可以通过使用基于先前关联研究、基因表达分析或功能注释信息的先验信息来增强。贝叶斯 GWA 分析适用于多种性状,可通过多性状、结构方程或图形模型深入了解多效性效应。贝叶斯方法还可用于结合基因组、转录组、蛋白质组和其他组学数据,以推断因果基因型与表型的关系,并提出可改善表现的外部干预措施。结论:贝叶斯分层和变量选择方法为基因组预测、GWA、先前信息的整合以及来自其他组学平台的信息整合提供了一个统一而强大的框架,以识别复杂数量性状的因果突变。