菊苣根 ( Cichorium intybus L. var. sativum ) 用于提取菊粉,菊粉是一种用作天然甜味剂和益生元的果糖聚合物。然而,在菊粉提取过程中需要去除味道苦涩的倍半萜内酯,而菊苣正是因为这种内酯才具有其独特的风味。为了避免这种提取过程及其相关成本,最近通过灭活四个拷贝的 germacrene A 合酶基因 ( CiGAS-S1、-S2、-S3、-L ),创建了倍半萜内酯含量较低的菊苣变种,该基因编码的酶可启动菊苣中苦味倍半萜内酯的生物合成。在本研究中,对 CRISPR/Cas9 试剂的不同递送方法进行了比较,比较了它们在 CiGAS 基因中诱导突变的效率、脱靶突变的频率以及它们对环境和经济的影响。 CRISPR/Cas9 试剂通过农杆菌介导的稳定转化或使用相同 sgRNA 的质粒或预组装核糖核酸复合物 (RNP) 瞬时递送。所有使用的方法都会导致 CiGAS -S1 和 CiGAS -S2 基因中出现大量 INDEL 突变,这些基因与所用的 sgRNA 完全匹配;此外,与 sgRNA 有一个错配的 CiGAS -S3 和 CiGAS -L 基因也发生了突变,但突变效率较低。虽然使用 RNP 和质粒递送会导致双等位基因、杂合或纯合突变,但质粒递送会导致 30% 的质粒片段在基因组中不必要地整合。通过农杆菌转化的植物通常表现出嵌合现象和 CiGAS 基因型的混合。当植物生长较长时间时,这种基因镶嵌变得更加多样化。虽然瞬时和稳定递送方法中靶基因型各不相同,但在六种已识别的潜在脱靶中未发现脱靶活性,这些脱靶存在两到四个错配。这些方法对环境的影响(温室气体 (GHG) 排放和一次能源需求)在很大程度上取决于它们各自的电力需求。从经济角度来看 - 就像大多数研究和开发一样
减薄硅芯片在柔性基板上的倒装芯片组装 Tan Zhang、Zhenwei Hou 和 R. Wayne Johnson 奥本大学 阿拉巴马州奥本 Alina Moussessian 和 Linda Del Castillo 喷气推进实验室 加利福尼亚州帕萨迪纳 Charles Banda 物理科学实验室 摘要 将减薄硅芯片(25-100 µ m)组装到柔性基板上为从智能卡到太空雷达等各种应用提供了超薄柔性电子产品的选择。对于高密度应用,可以通过堆叠和层压预组装和测试的柔性层然后处理垂直互连来制造 3-D 模块。本文介绍了将减薄芯片倒装芯片组装到聚酰亚胺和液晶聚合物 (LCP) 柔性基板上的工艺。已经开发出两种用于聚酰亚胺和 LCP 柔性基板的组装方法。在第一种方法中,将焊料凸块芯片回流焊接到图案化柔性基板上。需要使用夹具在回流期间保持柔性基板平整。回流之后是底部填充分配和固化。底部填充分配工艺对于避免底部填充流到薄硅片顶部至关重要,我们将在下文中讨论这一工艺。在第二种方法中,通孔通过聚酰亚胺或 LCP 蚀刻,露出接触垫的底面。将焊膏挤入通孔,回流并清洗,在通孔中形成焊料“凸块”。对浸焊产生的具有低轮廓焊料凸块的芯片进行焊剂处理、放置和回流。然后对芯片进行底部填充。这种方法可降低总组装厚度。简介为了满足单芯片和堆叠芯片封装中不断降低的轮廓要求,正在开发薄芯片的组装工艺。1-4 柔性基板(25-50 µ m)提供了一种进一步减小封装厚度的方法。减薄的 Si-on-flex 结构也有利于太空应用。减薄的 Si 虽然易碎,但也很灵活。减薄的 Si-on-flex 可以卷成管状进行发射,并在太空中展开,从而形成带有集成电子设备的大面积天线。组装减薄的 Si-on-flex 必须解决的问题包括:基板设计和制造、减薄后的凸块、芯片处理、回流期间的基板平整度和底部填充分配。这些将在以下章节中讨论。基板本工作中使用了两种柔性基板材料:聚酰亚胺和液晶聚合物 (LCP)。LCP 特性包括 100GHz 下的良好介电性能、低吸湿性和极低的透湿性。5-13 LCP 的热膨胀系数 (CTE) 可以在 LCP 薄膜的双轴挤出过程中控制。市售薄膜的 CTE 为 8 和 17ppm/o C。在本工作中使用 8ppm/o C LCP 薄膜。在用于倒装芯片组装的传统柔性基板设计中,铜芯片连接点的图案化位置与芯片组装位置在柔性薄膜的同一侧(图 1)。阻焊层用于定义可焊焊盘区域(顶面设计)。另一种方法是蚀刻聚酰亚胺或 LCP 通孔,露出铜焊盘的底面(背面设计)。通孔通过激光钻孔或反应离子蚀刻 (RIE) 制成。倒装芯片从铜图案的对面组装(图 2),从而无需阻焊层并减小了总厚度。这种方法的另一个优点(低轮廓凸块)将在后面介绍。顶面聚酰亚胺基板由约翰霍普金斯大学应用物理实验室制造,而激光钻孔背面 LCP 设计由 STS ATL 公司制造。背面 (RIE) LCP 和聚酰亚胺基板由奥本大学制造。只需一层金属即可布线菊花链芯片互连图案。