聚醚醚酮 (PEEK) 可直接打印成高性能部件。[1–5] 然而,仍有大量材料难以适应 3D 打印。例如,热固化的热固性材料(如环氧树脂和有机硅)因其机械性能、耐化学性和热稳定性的结合而广泛应用于许多应用中。[6] 然而,这些聚合物通常是双部分系统,必须混合,然后需要几分钟到几小时才能交联并完全固化。这些热固性材料会长时间保持液态,因此很难进行高保真度的 3D 打印,因为它们会流动并且不会保持其预期的几何形状。基于挤出的直接油墨书写 (DIW) 已经成功打印了环氧树脂和有机硅等热固性材料,但通常需要修改油墨成分和流变性以使其具有触变性,或使已经具有触变性,以允许在空气中打印。 [7,8] 此外,DIW 面临着与相关熔融沉积成型 (FDM) 类型方法相同的几何约束,例如悬垂结构和独立结构如果不使用支撑材料则难以打印。这些对可用于 3D 打印的材料和几何形状的限制严重限制了使用慢固化液体预聚物和软材料制造部件的复杂性。自由形式可逆嵌入 (FRE) 3D 打印是一种最近开发的技术,用于打印软质和液体材料并克服了这些挑战。[9] FRE 和相关的嵌入式 3D 打印技术首次由 Feinberg 和 Angelini 团队于 2015 年在不同的论文中描述,涉及将预聚物挤压到具有屈服应力的微凝胶基支撑浴中。 [10,11] 与将细丝挤出到平台上的典型 FDM 方法不同,在 FRE 中,所选材料(通常称为墨水)直接挤出到支撑槽中并固定到位,直到固化。支撑槽还大大减少了重力的影响,并且通常不需要任何额外的打印支撑结构。尽管有这些优势,但 FRE 工艺仍然存在独特的挑战
从可再生资源中生成单体、预聚物和填料 生物基/可持续热塑性塑料、热固性塑料及其复合材料的合成、配方和结构-性能关系 材料类别:氨基塑料、苯并恶嗪、纤维素和纤维素材料、弹性体和橡胶、环氧树脂、纤维复合材料、互穿网络、木质素、纳米颗粒和纳米复合材料、植物油及衍生物、酚醛树脂、聚酯、多糖及衍生物、聚氨酯(常规和非异氰酸酯、泡沫)、有机硅、乙烯基酯树脂、玻璃聚物 工艺方法:增材制造、化学回收、复合材料和纳米复合材料加工、压缩成型、挤出、注塑成型、机械回收 表征技术:FTIR、NIR 和 NMR 光谱、防火测试、气体吸附和表面积分析、GPC、质谱、渗透性测试、孔隙率测定、流变学、热分析、 x射线衍射
环氧树脂是一种反应性预聚物,其特征在于存在由两个碳原子和一个氧原子组成的环状结构的环氧基团,通过自均聚或与胺、酸酐、酸、醇或酯等共反应物发生交联反应形成大分子网络[1-3]。环氧树脂已被公认为最广泛使用的具有战略意义的热固性材料,由于其固有的机械和化学稳定性、耐热和耐腐蚀性、电绝缘性和强粘结性,通常应用于防腐涂料、粘合剂、半导体封装材料、电绝缘材料和高性能复合材料[4,5]。环氧树脂市场由印度、韩国、中国和日本等亚洲国家主导,其份额高达41.8%。这受到与北美和欧洲相比环境法规相对较少和国家鼓励制造业政策的影响,并且由于产品的性质,在亚洲大陆的发展中国家和新兴国家中得到广泛使用,该产品在道路和建筑物等建筑领域需求量很大。2019 年至 2024 年期间的年均增长率也是亚洲最高,为 6.9%,其次是中东和非洲、南美、北美和欧洲。2022 年,
本文报道了一种基于软辊冲压工艺的紫外固化聚合物微透镜阵列快速制造创新技术。在该方法中,通过在微透镜阵列的塑料母版中浇铸聚二甲基硅氧烷 (PDMS) 预聚物来制造具有微透镜阵列腔体的软辊。塑料母版采用气体辅助热压法在带有微孔阵列的硅模具上对聚碳酸酯 (PC) 薄膜进行聚碳酸酯 (PC) 薄膜压印来制备。软辊上的微透镜阵列腔首先用液态紫外固化聚合物填充。辊在移动的透明基板上滚动和冲压。形成微透镜阵列图案。同时,基板上的图案在穿过滚动区时被紫外光辐射固化。在本研究中,设计、建造和测试了具有紫外曝光能力的辊压设备。测量、分析了复制的微透镜阵列的复制质量、表面粗糙度和光学特性,结果令人满意。这项研究展示了软辊冲压在连续快速批量生产中的潜力。 2006 Elsevier BV 保留所有权利。
物理材料科学的优先领域之一是开发基于耐热聚合物的新型聚合物复合材料。聚酰亚胺在耐热聚合物领域占据领先地位。目前,使用各种基于聚酰亚胺的材料。聚酰亚胺泡沫 ( PIF ) 广泛用于微电子领域,以生产介电常数非常低的电介质、传感器保护涂层、用于补偿振动载荷的应力缓冲器以及许多集成电路元件;由于其高热稳定性和耐热性以及防火性,它们还在航空航天中用作隔热、吸音和减震材料 [ 1 ] 。存在几种获取 PIF 的基本技术。最常见的过程是基于四羧酸酯与二胺的化学反应,其结果是形成相关的预聚物 [ 2 ] 。上述 PIF 生产方法的替代方法可能是在热处理聚酰胺酸 (PAA) 的水溶性铵盐的冻干物的过程中形成多孔聚酰亚胺结构的技术 [ 3 ] 。其独特之处在于无需使用表面活性剂或其他添加剂即可获得所需形状的各向同性泡沫材料,因为多孔结构是由于溶液冻结并随后水升华而形成的。然而,在这种情况下,泡沫材料性能的调节仅限于选择 PAA 盐溶液的浓度及其冻结条件。此外,控制性能的可能方法之一是引入各种填料 [ 4 ] 。在改善聚酰亚胺的热性能和机械性能方面特别令人感兴趣的是层状铝硅酸盐纳米颗粒 [ 5 ] 。在广泛使用的铝硅酸盐纳米颗粒中,有蒙脱石,其特点是可用性和高度各向异性。因此,本研究的目的是
摘要:将苯并环丁烯改性倍半硅氧烷(BCB-POSS)和二乙烯基四甲基二硅氧烷-双苯并环丁烯(DVS-BCB)预聚物分别引入到由1-甲基-1-(4-苯并环丁烯基)硅环丁烷(4-MSCBBCB)和1-甲基-1-苯基硅环丁烷(1-MPSCB)聚合而成的含苯并环丁烯(BCB)单元的基质树脂P(4-MB-co-1-MP)中,制备出低介电常数(低k)硅氧烷/碳硅烷杂化苯并环丁烯树脂复合材料P(4-MB-co-1-MP)/BCB-POSS和P(4-MB-co-1-MP)/DVS-BCB。通过傅里叶变换红外光谱(FTIR)和差示扫描量热法(DSC)研究了复合材料的固化过程。利用阻抗分析仪和热重分析仪(TGA)研究了不同比例的BCB-POSS和DVS-BCB对复合材料介电性能和耐热性的影响。复合材料的热固化可以通过BCB-POSS或DVS-BCB的BCB四元环与P(4-MB-co-1-MP)的BCB四元环的开环聚合(ROP)进行。随着BCB-POSS比例增加至30%,P(4-MB-co-1-MP)/BCB-POSS复合材料的5%热失重温度(T 5% )明显升高,但由于POSS中引入了纳米孔,介电常数(k)降低。对于P(4-MB-co-1-MP)/DVS-BCB复合材料,随着DVS-BCB比例的增加,T 5%和k略有升高。以上结果表明,BCB-POSS 比传统填料具有优势,可同时提高热稳定性并降低 k。