广泛用作航空航天和核工程(在裂变和聚变应用)的结构材料、金属加工工具和坩埚,以及腐蚀环境中的化学反应容器。最近,所有组成元素含量相当的复杂浓缩合金 (CCA) 已成为 RA 研究的一个新课题 [3, 4, 5, 6]。从纯金属到 CCA 的转变通常会改善材料性能和/或出现新的有益工程特性。在过去的 15-20 年里,这类合金一直是深入研究的主题。如今广泛讨论的高熵合金 [7, 8, 9] 是 CCA 的一个特例,其中合金元素的数量等于或超过五种。但即使涉及的元素数量只有三四种,与纯金属相比,高构型熵和严重的晶格畸变也会导致 CCA 材料性质发生质的变化。Senkov 等人。 [3, 10] 研究了一种 W 0.25 Ta 0.25 Mo 0.25 Nb 0.25 合金,该合金在高温下表现出有趣的力学性能:在 850K 至 1800K 的温度范围内,屈服应力极高(约 600 MPa)并且似乎几乎与温度无关。人们认为造成这一不寻常特征的主要机制之一是 CCA 的局部晶格畸变 (LLD) [7, 11],它抑制了位错运动。根据这一推测,在 Zou 等人最近的研究中 [12],他们通过高分辨率透射电子显微镜证实了 Nb-Mo-Ta-W 耐火合金中的局部畸变。经典分子动力学 (MD) 模拟是研究 CCA 特性最有力的工具之一。这种建模的关键部分是原子间势。因此,为此类系统开发可靠且广泛适用的势能是计算材料科学中的一项基本任务。对于耐火 CCA,Zhou 等人 [13, 14] 报道了一类可扩展至合金的嵌入式原子方法 (EAM) 势能。2013 年,Lin 等人 [15] 将 Zr 和 Nb 组分纳入该组势能中。这些势能被广泛用于探测耐火 CCA 中缺陷的行为 [16, 17, 18, 19, 20]。然而,由于可预测性较差,使用该模型获得的模拟结果最多只能视为定性的——即使对于纯金属也是如此。例如,对于纯钨,Zhou 的势能严重高估了熔化温度(比实验值高出近 1000K)[21],并且与从头算计算结果相比,显示出错误的螺位错 Peierls 势垒特征(峰值和形状)[22]。对于纯钼,Zhou 的模型给出了螺位错的极化核心
附件包含食品药品监督管理局(FDA)为咨询委员会小组成员准备的背景信息。FDA背景软件包通常包含评估和/或结论以及个人FDA审稿人编写的建议。此类结论和建议并不一定代表单个审稿人的最终立场,也不一定代表审查部门或办公室的最终立场。我们将生物制剂申请(BLA)761393(Condoliarse注入)带到了该咨询委员会,以获取委员会的见解和意见,背景计划可能不包括与最终监管建议相关的所有问题,而是旨在专注于咨询委员会对本机构进行讨论的问题的重点。FDA将在考虑咨询委员会流程的意见并完成所有审查之前,不会对目前的问题发出最终决定。最终决定可能会受到咨询委员会会议上未讨论的问题的影响。
冷凝器和压载电阻亨利本人设计了大部分电气系统;作为一名自学成才的电气工程师,他逐渐改善了他的组件,有时是多年来。因此,它们已成为激烈讨论的主题,有时甚至是迷惑的主题。他的点火系统是一个很好的例子 - 如今,维护良好的20HP点火系统可以成为可靠性的模型;我们的汽车将在冬季的冬眠后立即开始,并在所有地形和气候中度过了一个夏天的夏季。证明了他设计可靠性和寿命的哲学。尽管如此,神话和传说有足够的机会,其中一些在下面概述。点火系统的原理相对简单,由低张力电路和高张力电路组成。当接触断路器打开主线圈产生的磁场时,几乎立即降至零,并在二次线圈中诱导高压,该电压由分配器馈送到火花塞。但是,由于两个电路之间的反馈以及极快的振荡和共振,点火电路非常困难地描述了数学上的描述。这种动态电气系统在数学上总是比稳态,例如直流电流或缓慢变化,例如正常的交流电系统。冷凝器是一个必不可少的组件,有助于控制这些谐振电路,很幸运,冷凝器的确切电容(FARAD值)并不是太危险。现代的12伏线圈通常需要约0.2微型法拉德(μF)的冷凝器。其主要线圈的电阻约为4欧姆,设计用于传递最佳电流(3-4安培),以生成线圈内部的磁场。原始的Royce 4伏线盘具有1.3欧姆主电源,需要约3欧姆的镇压电阻才能达到最佳的3-4安培电流。4伏线圈需要较高电容的冷凝器,例如0.3μF,以实现最佳性能。已故的大卫(David)其他人对此进行了研究,因为在业余时间,他曾经将原始的劳斯莱斯冷凝器恢复为20 hps。他确认他测量的大多数现代“ 12伏”冷凝器约为0.2μf。在拆除Royce冷凝器之前,他检查了其价值:他可以在0.25至0.3μf的范围内获得电容读数,这与某些构建表上显示的值一致(例如,请参见Fasal的第164页的第164页,其中适合45G2的冷凝器记录为0.31μf)。电容值。都同意David,RR最初提供了一个0.3μF的冷凝器,其4伏线圈。大卫曾经用来翻新您的原始冷凝器。他将其拆除并清洁,并在里面安装了现代的0.3μf电容器。总的来说,他为所有者做了20多个以上,而且据他所知,他从来没有任何失败。在1927年的短时间内,有20 hps装有一个冷凝器,顶部有两个连接器,第二个连接器是地球。也许罗伊斯(Royce)担心,依靠简单的压力拟合将冷凝器的套管与分配器机构连接起来,这不是足够的roycean!但是,该公司在几个月后恢复为原始设计,因此两连电的冷凝器相对罕见。照片显示了一个安装在我1927年GXL39的两个连接器冷凝器。这是大卫其他人为我找到的。
本期特刊简要概述了高分辨率星载射电天文学的现状。在射电天文学中,通过采用干涉测量法,特别是其“终极”体现——甚长基线干涉测量法 (VLBI),可以实现高角分辨率。本文发表的时机似乎非常恰当:2019 年将因与本期特刊主题相关的两个里程碑而载入射电天文学史。首先,作为第二个也是迄今为止最后一个专门的空间 VLBI 任务,由俄罗斯牵头的 RadioAstron(Kardashev 等,2013)在成功运行 7.5 年后完成了其在轨寿命。这项任务,连同它的两个前身,即 1986-1988 年的首次示范性轨道 VLBI 与 NASA 的跟踪和数据中继卫星系统 (OVLBI-TDRSS) (Levy 等人,1986) 以及首次专门的空间 VLBI 任务,即日本主导的 VSOP/HALCA (Hirabayashi 等人,1998),构成了 VLBI 系统基线超过地球直径的首批示例。RadioAstron 任务(本期特刊介绍了其部分结果)在其观测波长上提供了最高的角分辨率。本特刊中 Bayandina 等人、Bruni 等人、Edwards 等人、Gabuzda 等人、Jauncey 等人、Kovalev Yu.A. 等人、Kovalev YY 等人、Kravchenko 等人、Richards 等人、Shakhvorostova 等人、Shatskaya 等人、Zakhvatkin 等人和 Zensus 等人的论文回顾了 RadioAstro 的结果以及补充的地面研究和一些有关 RadioAstron 操作的主题。其次,2019 年标志着超大质量黑洞及其相对论“阴影”直接成像研究时代的开始。事件视界望远镜 (EHT) 合作组织 (2019) 进行的 230 GHz 全球地球甚长基线干涉测量观测取得了突破性成果。然而,进一步研究黑洞阴影的线性分辨率与事件视界相当,需要更清晰的视野。这可以通过在亚毫米波长处进行观测来实现,这比最近 EHT 在波长为
摘要 — 本文讨论了处理分米级分辨率的星载 SAR 数据时需要考虑的几个重要方面。特别是,本文将展示卫星在发送/接收线性调频信号期间的运动以及对流层的影响如何在未适当考虑的情况下使脉冲响应函数恶化。已研究的其他方面包括弯曲轨道、电子控制天线的阵列模式以及处理本身中的几个考虑因素。针对每个方面都提出了解决方案,并使用 TerraSAR-X 以 16 厘米方位角分辨率和 300 MHz 范围带宽获取的模拟点目标和凝视聚光灯数据阐述和验证了完整的聚焦方法。
摘要:微机电系统 (MEMS) 的最新进展为生物和化学分析物的无标记检测 (LFD) 带来了前所未有的前景。此外,这些 LFD 技术提供了设计高分辨率和高通量传感平台的潜力,并有望进一步小型化。然而,将生物分子固定在无机表面上而不影响其传感能力对于设计这些 LFD 技术至关重要。目前,自组装单层 (SAM) 的共价功能化为提高检测灵敏度、可重复性、表面稳定性和结合位点与传感器表面的接近度提供了有希望的途径。在此,我们研究了使用化学气相沉积 3-(缩水甘油氧基丙基)-三甲氧基硅烷 (GOPTS) 作为多功能 SAM 对 SiO 2 微悬臂阵列 (MCA) 进行共价功能化,以实现具有皮克灵敏度的碳水化合物-凝集素相互作用。此外,我们证明了使用传统压电微阵列打印机技术将聚糖固定到 MCA 是可行的。鉴于糖组的复杂性,以高通量方式发现样本的能力使我们的 MCA 成为分析碳水化合物-蛋白质相互作用的稳健、无标记和可扩展的方法。这些发现表明,GOPTS SAM 为 MEMS 提供了合适的生物功能化途径,并提供了可以扩展到各种 LFD 技术以实现真正高通量和高分辨率平台的原理证明。