图 S4 . MAPbI 3 和处理过的 MAPbI 3 的 X 射线图。a) 10-35 o 范围内的 X 射线光谱仪。b) 和 c) 分别报告了 14.1 o 处 (110) 峰的缩放图和 MAPbI 3 和处理过的 MAPbI 3 的高斯拟合曲线。根据谢乐方程:d=(0.89*λ)/(FWHM*cosθ),其中 λ 是 X 射线的波长,FWHM 是衍射峰的半峰全高,θ 是衍射角。通过高斯拟合评估的14.1 o 处的峰(110)的半峰全宽分别为后处理前后的钙钛矿的0.170±0.002和0.165±0.001,从而计算出的晶体尺寸分别为82.1±0.2nm和86.1±0.1nm。
*通讯作者:Muyi Yang,固态物理研究所,弗里德里希·席勒大学Jena,Max-Wien-Platz 1,07743 Jena,德国;弗里德里希·席勒(Friedrich Schiller)大学Jenafriedrich Schiller大学耶拿(Jena),Albert-Einstein-STR的ABBE光子学中心应用物理学研究所。15,07745德国耶拿;和Max Planck Photonics,Hans-Knöll-Straße1,07745德国Jena,电子邮件:muyi.yang@uni-jena.de。https://orcid.org/0000-0002-1738-4536 Maximilian A. Weissflog,应用物理研究所,Abbe Photonics,Friedrich Schiller University,Albert-Einstein-STR。15,07745德国耶拿;以及汉斯·斯特拉斯(Hans-Knöll-Straße)1,07745德国耶拿(Jena),麦克斯·普朗克(Max Planck)光子学院。https://orcid.org/0000-0002-3091-1441 Zlata Fedorova,固态物理研究所,弗里德里希·施莱尔·史列尔(Friedrich Schiller Uni-Cersity Jena),Max-Wien-Platz 1,07743 Jena,德国Jena,德国;和应用物理研究所,Abbe光子学中心,弗里德里希·席勒大学(Friedrich Schiller)大学耶拿,阿尔伯特·恩斯坦 - 斯特(Albert-Einstein-STR)。15,07745德国耶拿,安吉拉·贝雷达(Angela I. Barreda),固态物理研究所,弗里德里希·席勒(Friedrich Schiller Uni-Cersity),耶拿(Jena),马克斯 - 韦恩·普拉茨(Max-Wien-Platz)1,07743德国耶拿(Jena);弗里德里奇(Friedrichschilleruniversityjena),阿尔伯特·埃因斯坦(Albert-Einstein-STR),弗里德里希(Friedrichschilleruniversityjena)应用物理学研究所。15,07745德国耶拿;以及AVDA马德里大学卡洛斯三世分校的展示和光量应用程序。de la大学,30岁,莱加纳,28911马德里,西班牙,斯特凡·伯纳,应用物理研究所,阿贝·光子学院,弗里德里希·席勒大学耶拿,阿尔伯特·史特恩·斯特林。15,07745德国耶拿;和麦克斯·普朗克(Max Planck)摄影学院,汉斯·斯特拉斯(Hans-Knöll-Straße)1,07745德国耶拿(Jena)15,07745 Jena,Ger-许多Falk Eilenberger和Thomas Pertsch,Applied Physics研究所,Abbe Photonics,弗里德里希·席勒大学Jena,Albert- Einstein-STR。15,07745德国耶拿; Max Planck Photonics,Hans-Knöll-Straße1,07745 Jena,德国;和弗劳恩霍夫(Fraunhofer)应用光学和精密工程IOF,Albert-Einstein-Straße7,07745 Jena,德国伊萨贝尔·斯塔德(Isabelle Staude),固体状态研究所,弗里德里希·施莱尔·施莱尔·席勒(Friedrich Schiller Uni-Versity)弗里德里奇(Friedrichschilleruniversityjena),阿尔伯特·埃因斯坦(Albert-Einstein-STR),弗里德里希(Friedrichschilleruniversityjena)应用物理学研究所。
摘要:微机电系统 (MEMS) 的最新进展为生物和化学分析物的无标记检测 (LFD) 带来了前所未有的前景。此外,这些 LFD 技术提供了设计高分辨率和高通量传感平台的潜力,并有望进一步小型化。然而,将生物分子固定在无机表面上而不影响其传感能力对于设计这些 LFD 技术至关重要。目前,自组装单层 (SAM) 的共价功能化为提高检测灵敏度、可重复性、表面稳定性和结合位点与传感器表面的接近度提供了有希望的途径。在此,我们研究了使用化学气相沉积 3-(缩水甘油氧基丙基)-三甲氧基硅烷 (GOPTS) 作为多功能 SAM 对 SiO 2 微悬臂阵列 (MCA) 进行共价功能化,以实现具有皮克灵敏度的碳水化合物-凝集素相互作用。此外,我们证明了使用传统压电微阵列打印机技术将聚糖固定到 MCA 是可行的。鉴于糖组的复杂性,以高通量方式发现样本的能力使我们的 MCA 成为分析碳水化合物-蛋白质相互作用的稳健、无标记和可扩展的方法。这些发现表明,GOPTS SAM 为 MEMS 提供了合适的生物功能化途径,并提供了可以扩展到各种 LFD 技术以实现真正高通量和高分辨率平台的原理证明。
Boris Rodenak-Kladniew 1,*, Rocío Gambaro 2 , José S. Cisneros 3 , Cristián Huck-Iriart 4,5 , Gisel Padula 2,6 , Guillermo R. Castro 7,8 , Cecilia Y. Chain 3 , Germán A. Islan 9,* 1 拉普拉塔生化研究所 (INIBIOLP),CONICET-UNLP,CCT-La Plata,医学科学学院,拉普拉塔,阿根廷 2 兽医遗传学研究所 (IGEVET,UNLP-CONICET LA PLATA),兽医科学学院 UNLP,拉普拉塔,阿根廷 3 理论与应用物理化学研究所 (CONICET-UNLP),拉普拉塔,布宜诺斯艾利斯,阿根廷 4 新兴技术和应用科学研究所 (ITECA),UNSAM-CONICET,科学技术学院 (ECyT),晶体学实验室应用数学系(LCA),Miguelete 校区,(1650)圣马丁,布宜诺斯艾利斯,阿根廷 5 ALBA 同步加速器光源,Carrer de la Llum 2–26,Cerdanyola del Vallès,08290 巴塞罗那,西班牙 6 自然科学学院和博物馆,UNLP,阿根廷。 7 马克斯普朗克结构生物学、化学和罗萨里奥分子生物物理学实验室(MPLbioR、UNR-MPIbpC)、马克斯普朗克生物物理化学研究所合作实验室(MPIbpC、MPG)、罗萨里奥国立大学跨学科研究中心(CEI),罗萨里奥,阿根廷 8 纳米医学研究单位(Nanomed)、自然与人文科学中心(CCNH)、ABC 联邦大学(UFABC),圣安德烈,SP,巴西。 9 阿根廷布宜诺斯艾利斯拉普拉塔,工业发酵研究与开发中心(CINDEFI),纳米生物材料实验室,精确科学学院化学系,CONICET-UNLP(CCT La Plata)。通讯地址:germanislan@biol.unlp.edu.ar (GAI); brodenak@med.unlp.edu.ar (BR-K.)
由于具有原位合金化能力,激光束定向能量沉积已成为一种越来越受欢迎的材料发现先进制造技术。在本研究中,我们利用增材制造支持的高通量材料发现方法来探索跨度为 0 ≤ x ≤ 21 at.% 的分级 W x(CoCrFeMnNi)100-x 样品的成分空间。除了微观结构和机械特性外,还对 W 20(CoCrFeMnNi)80 成分进行了同步加速器高速 X 射线计算机辅助断层扫描,以可视化熔化动力学、粉末-激光相互作用和先前固结材料的重熔效应。结果表明,尽管构型熵很高,但当 W 浓度 > 6 at.% 时会形成 Fe 7 W 6 金属间相。当 W 浓度 > 10 at.% 时也会出现未结合的 W 颗粒,同时在 W/基质界面处出现 Fe 7 W 6 溶解带,硬度值大于 400 HV。主要强化机制归因于 Fe 7 W 6 和 W 相作为金属基复合材料的强化。重熔过程中的原位高速 x 射线成像显示,额外的激光通过并未促进 Fe 7 W 6 或 W 相的进一步混合,这表明,尽管 W 溶解到 Fe 7 W 6 相中在热力学上是有利的,但在动力学上受到金属间相的厚度/扩散率以及激光工艺的快速凝固的限制。