摘要 目的 2018年12月,中国启动国家带量采购(NVBP),与药品生产企业进行药品价格谈判。吉非替尼是25种试点药物之一,用于治疗非小细胞肺癌。肺癌是中国最常见的癌症类型,像吉非替尼这样的靶向药物已被证明可以为患者带来临床益处。本研究旨在探讨NVBP政策对抗癌药物使用和支出的影响。方法 以吉非替尼和替代药物(埃克替尼和厄洛替尼)为研究对象。使用中国医院药品审计数据库的9454家医院的季度数据进行分析。以采购量和支出为变量进行描述性分析。采用间断时间序列(ITS)分析进一步分析NVBP政策对研究药品的影响。结果 NVBP政策实施前(2018Q2—2019Q1)与实施后(2019Q2—2020Q1)的12个月期间,药品总采购量从448万DDD上升至702万DDD,增幅为56.66%,吉非替尼和替代药品的采购量分别增长了100.61%和14.88%。NVBP政策实施后,替代药品采购量减少了72 051 DDD(P值=0.044),趋势变化量减少了56 738 DDD(P值<0.01)。总体费用减少14.7%,其中吉非替尼费用减少38.47%,替代药品费用增加10.70%。ITS分析显示,总药品和吉非替尼费用的水平和趋势变化差异均具有统计学意义。结论 本研究提供的证据表明,NVBP政策的实施与第一代抗EGFR肺癌药物费用的减少有关。该政策有效地控制了第一代抗EGFR肺癌药物费用的增长。
Pfizer-Biontech Covid-19疫苗,优先使用低死量注射器和/或针。•每个剂量必须含有0.3 mL的疫苗。•如果在小瓶中剩余的疫苗量不能提供0.3毫升的全剂量,请丢弃小瓶和任何多余的体积。•稀释后6小时立即进行管理。•低死量注射器和/或针可用于从单个小瓶中提取6剂。以确保一致
儿童的成熟生理反映在更复杂的给药方案中,以在儿科一生中达到目标暴露[1]。对于多种药物,如果满足以下要求,治疗药物监测(TDM)可能支持药物治疗的优化:(1)治疗范围较窄,(2)变异性大,(3)已知的浓度-效应关系,(4)没有可测量的效果。模型信息精准给药(MIPD)是TDM的下一步,最近受到了更多的关注,因为它可以作为帮助个体化给药的有力工具[2]。特别是,儿科药物治疗可能会受益于这种临床决策支持(CDS)的发展,并超越复杂的给药方案,实现更加个性化的给药。在本期期刊中,Hartman 等人[ 3 ] 评估根据基于模型的剂量指南对危重新生儿和儿童给药的万古霉素、庆大霉素和妥布霉素在 TDM 期间的目标达成情况。尽管如此,作者仍然观察到这三种药物的亚治疗浓度和超治疗浓度的比例很大。我们非常感谢他们在实施更简化的剂量指南后评估目标达成情况的主动性
摘要表明,与Lebiedow-Icz等人的主张相反。(Phys Rev D 105(1):014022,2022)在适当的物理变量中配制的较低定理(Phys Rev 110(4):974–977,1958)用于软光子发射不需要任何模拟。我们还拒绝Lebiedowicz等人的批评。(2022)论文(Phys。Burnett和Kroll。修订版Lett。 20:86–88,1968; Nucl Phys B 307:705–720,1988年的Lipatov。 同时,我们确定了Burnett and Kroll(1968)中的一些不准确性,以呈现软孔定理的旋转一半属性。 我们还指出了经典教科书中低定理的缺点(Berestetskii等人 量子电动力学。 Pergamon Press,牛津,1982年; Lifshitz和Pitaevsky在相对论量子理论中,第2部分,Fizmatlit,2002)。Lett。20:86–88,1968; Nucl Phys B 307:705–720,1988年的Lipatov。同时,我们确定了Burnett and Kroll(1968)中的一些不准确性,以呈现软孔定理的旋转一半属性。我们还指出了经典教科书中低定理的缺点(Berestetskii等人量子电动力学。Pergamon Press,牛津,1982年; Lifshitz和Pitaevsky在相对论量子理论中,第2部分,Fizmatlit,2002)。
更高的能量“容易” - 3个TEV研究(CLIC),但许多TEV具有挑战性:•功率与亮度成比例•考虑到50km•较高能量意味着较小的光束和越来越重要的横梁效应
目的颅内压 (ICP) 监测是追踪神经外科患者的一种广泛使用且必不可少的工具,但仅使用基于 ICP 的范例来指导管理有局限性。有人提出,除了平均 ICP 之外,ICP 变异性 (ICPV) 可能是神经系统结果的有用预测指标,因为它代表了完整脑压自动调节的间接测量。然而,目前关于 ICPV 适用性的文献显示 ICPV 和死亡率之间存在相互矛盾的关联。因此,作者旨在使用 eICU 协作研究数据库 2.0 版研究 ICPV 对颅内高压发作和死亡率的影响。方法作者从 eICU 数据库中提取了 868 名神经外科患者的 1,815,676 个 ICP 读数。使用两种方法计算 ICPV:滚动标准差 (RSD) 和滚动平均值的绝对偏差 (DRM)。颅内高压发作定义为在任何 30 分钟的时间窗口中至少有 25 分钟的 ICP > 22 毫米汞柱。使用多元逻辑回归计算平均 ICPV 对颅内高压和死亡率的影响。使用具有长短期记忆的循环神经网络对 ICP 和 ICPV 进行时间序列预测,以预测未来的颅内高压发作。结果使用两种 ICPV 定义,较高的平均 ICPV 与颅内高压显着相关(RSD:aOR 2.82,95% CI 2.07–3.90,p < 0.001;DRM:aOR 3.93,95% CI 2.77–5.69,p < 0.001)。 ICPV 与颅内高压患者的死亡率显著相关(RSD:aOR 1.28,95% CI 1.04–1.61,p = 0.026,DRM:aOR 1.39,95% CI 1.10–1.79,p = 0.007)。在机器学习模型中,两种定义的 ICPV 均取得了同样好的结果,DRM 定义在 20 分钟内获得的最佳 F1 得分为 0.685 ± 0.026,曲线下面积为 0.980 ± 0.003。结论作为神经监测的一部分,ICPV 可作为预测神经外科重症监护中颅内高压发作和死亡率的辅助手段。进一步研究使用 ICPV 预测未来的颅内高压发作可能有助于临床医生对患者的 ICP 变化做出迅速反应。
头皮上会突然出现一阵刺激,然后是短暂的停顿。很多人说感觉像静电或拍打。这种感觉通常在前几次治疗中最为强烈。随着治疗区域周围的神经逐渐适应刺激,这种感觉会随着时间的推移而减弱。• 您将在治疗期间接受 20 到 30 次治疗
摘要 — 重复经颅磁刺激 (rTMS) 是一种非侵入性神经调节技术,用于治疗多种神经系统疾病。该技术涉及在大脑皮层的某些区域施加磁场,以改变颅骨外的神经元兴奋性。然而,rTMS 效应背后的确切大脑机制尚未完全阐明。为此,为了产生脉冲磁场,设计了一个由微控制器控制的半桥转换器,用于在小动物身上应用 rTMS。此外,啮齿动物头部尺寸较小,因此必须设计一个磁换能器,目的是使用特定的小磁头将磁场聚焦在选定的大脑区域。然后,我们的目的是比较五种不同 rTMS 剂量对大鼠大脑代谢活动的影响。实验结果表明,一天的刺激可增强大脑皮层区域的代谢活动,同时三天的刺激还可能改变皮层下区域,而将 rTMS 应用次数延长至七天时则未发现这种结果。因此,传送的脉冲数可能是 rTMS 协议中的一个重要参数,突出了其在 rTMS 影响中的重要性。索引术语 — 细胞色素 c-氧化酶、磁疗、神经调节、重复经颅磁刺激。