摘要 哥德堡数字人文研究基础设施 (GRIDH) 参与了各个人文领域的项目,这些项目利用并开发了结合“人工智能” (AI) 应用的研究工具和基础设施资源。这些应用包括自然语言处理、机器学习、计算机视觉、大型语言模型、图像识别算法、分类、聚类和深度学习。本文提出了“人文 AI”一词,以描述一种新兴的跨学科实践形式,该实践使用和开发基于 AI 的研究应用程序来回答人文研究问题及其纠缠不清的人文反思。我们创造这个术语是为了使其实践的认识论和物质特殊性以及其可供性使之成为可能的新知识形式变得隐晦和可见。本文介绍了 GRIDH 在“人文 AI”领域的项目及其开发的 AI 资源和应用。
摘要:本文通过展示正在进行的项目和该领域的最新发展,概述了人工智能在医疗保健领域的潜在和实际应用,包括将人工智能融入生物技术。通过分析因偏见和遵守数据保护制度的复杂性而引起的问题,提请关注可能的风险和法律挑战。重点仍然是欧盟。本文最后总结了与 covid-19 大流行的相关性以及人工智能为解决危机做出贡献的潜力。 关键词:人工智能;医疗保健;生物技术;个性化治疗;covid-19 摘要:1. 简介 – 1.1 什么是人工智能以及它是如何工作的?– 2. 卫生和科技部门合作的示范项目 – 2.1. InnerEye Microsoft 项目 – 2.2. DeepMind 和 Google Health – 2.3 使用应用程序追踪帕金森病 – 3. 风险和挑战 – 3.1. 算法偏见 –法律问题 – 3.2.1. 数据保护 – 3.2.2. 责任 – 3.3. 其他挑战 – 4. 监管尝试:欧盟 – 5. 结论:与 Covid-19 的相关性 1. 简介
解决电子结构问题代表了量子计算机的一个有前途的应用领域。目前,人们投入了大量精力设计和优化近期量子处理器的量子算法,目的是使用有限的量子资源在选定的问题实例上超越经典算法。这些方法仍有望具有防止大规模和批量系统量子模拟的运行时间。在这项工作中,我们提出了一种策略,使用在量子模拟数据上训练的机器学习潜能将量子计算方法的范围扩展到大规模模拟。在当今的量子环境中应用机器学习潜能的挑战来自于影响电子能量和力的量子计算的几种噪声源。我们研究了选择各种噪声源的机器学习潜能的可训练性:统计、优化和硬件噪声。最后,我们从实际 IBM Quantum 处理器上计算的氢分子数据构建了第一个机器学习潜能。这已经使我们能够执行任意长且稳定的分子动力学模拟,优于所有当前分子动力学和结构优化的量子方法。
人工智能 (AI) 和机器学习 (ML) 的出现遍及多个行业,改变了从医疗保健到交通运输等各个领域。人工智能最近备受关注,但对美国食品药品管理局 (FDA) 或医疗技术行业来说,这并不是一个新概念。医疗技术行业的人工智能进步在通过创新护理、降低医疗成本和改善患者治疗效果来改善患者生活方面发挥着重要作用。支持 AI/ML 的医疗设备受 FDA 监管
加快其在人工智能领域的全球领导地位的战略。为此,成立了世界上第一个人工智能部,并任命了一位专门的人工智能部长——奥马尔·苏丹·阿尔
摘要背景:人工智能 (AI) 技术正在不断快速发展,并有可能使职业治疗 (OT) 和 OT 客户受益。然而,人工智能的发展也带来了风险和挑战,例如与 OT 的伦理原则有关。支持未来符合 OT 伦理原则的人工智能技术的一种方法可能是通过以人为本的人工智能 (HCAI),这是人工智能研究和开发中的一个新兴分支,与 OT 的价值观和信念有明显的重叠。目标:从 OT 的伦理价值观和信念的角度,探索人工智能技术的风险和挑战,以及 OT 和 HCAI 的综合专业知识、技能和知识如何有助于发挥其潜力并塑造其未来。结果:未来人工智能技术与 OT 和 HCAI 合作的机会包括确保关注 1) 职业表现和参与,同时考虑以客户为中心;2) 职业公正和尊重多样性,以及 3) 透明度和尊重职业表现和参与数据的隐私。结论和意义:OT 需要参与并确保通过使用 HCAI 以有意义且合乎道德的方式应用 AI 为 OT 和 OT 客户服务。
15 年来,欧洲已成为气候创新领域的全球领导者,投资数十亿欧元开发建立净零经济所需的突破性技术。然而,正如上周发布的欧盟竞争力指南所强调的那样,欧洲“从发现和申请专利到上市的道路上障碍重重”。指南采纳了马里奥·德拉吉的评估,即脱碳是欧洲繁荣的机遇,并将降低能源价格和提高我们在清洁技术领域的领先地位视为增强竞争力的“转型要务”。然而,这两份文件都警告说,欧洲清洁工业的供应不足以实现其脱碳目标,过度依赖进口国外制造的清洁技术可能会导致欧洲无法抓住这些机会。雄心壮志与随后的行动一样重要。这就是为什么我们,一个由 16 个智库、民间社会组织、研究和行业协会组成的团体,要求新的清洁工业协议为指南中概述的“联合脱碳和竞争力路线图”提供行动计划。
最复杂的机器学习形式涉及深度学习。这是一种神经网络,但具有许多预测结果的层。它已用于肿瘤学和放射学的准确诊断。此类模型中可能存在多个隐藏特征,由于当今的技术,这些特征可以更快地被发现。深度学习通常用于识别放射学中的癌变组织。4 它可以识别放射图像和放射组学中的潜在癌变病变,以检测肉眼看不见的临床相关数据。深度学习也用于语音识别。然而,这种类型的学习很复杂,超出了普通人类观察者的解释范围。人工智能 (AI) 在商业和社会等领域越来越普遍,现在也被用于医疗保健。人工智能技术有可能改变患者护理和管理医疗保健部门的行政流程。多项研究指出,人工智能在关键的医疗保健任务中表现优于人类,例如在诊断疾病、研究、发现肿瘤等方面。尽管如此,人们相信人工智能不会很快取代人类在医疗保健领域的地位。文章