量子信息的频率编码与光纤和集成光子技术相结合,可以显著降低实现全光子量子网络的复杂性和资源要求。这种单光子的频域处理的关键挑战是在一定带宽范围内实现不同频率量子光场之间的相干和选择性相互作用。在这里,我们报告了频域 Hong-Ou-Mandel 干涉,干涉光子与基于芯片的微谐振器产生的光谱不同的光子发生干涉。我们使用四波混频来实现有源“频率分束器”,并实现 0.95 0.02 的干涉可见度。我们的工作确立了四波混频作为频域选择性高保真双光子操作的工具,与集成单光子源相结合,为频率复用光子量子网络提供了基石。
立体图像超分辨率(Sterereosr)近年来引起了人们的关注,这是由于手机,自动驾驶汽车和机器人的双重摄像头广泛范围。在这项工作中,我们根据Swinir的扩展(最初是为单个图像还原设计的,又提出了一种名为SWINFSR的新定单方法,以及Fast Fourier卷积(FFC)获得的频域知识。具体来说,为了有效地收集全球信息,我们通过使用FFC明确地不明显地局限于SWINIR中的残留SWIN变压器块(RSTBS),并使用结果域知识,并采用结果的残留Swin傅立叶型跨前块(RSFTB)进行特征提取。此外,为了有效,准确的立体视图融合,我们提供了一个新的跨意见模块,称为RCAM,该模块的竞争性能高于竞争性能,同时比最先进的交叉意见模块更少的计算成本。广泛的实验结果和消融研究证明了我们提出的SWINFSR的有效性和效率。
压力是指身体对任何环境变化做出的生理、情绪和心理反应,需要进行调整,对人类心理产生重大影响。视障人士 (VIP) 的压力尤其难以控制,因为他们在未知情况下很容易感到压力。脑电图 (EEG) 信号可用于检测压力,因为它基本上代表了人类大脑中持续的电信号变化。文献表明,压力检测技术大多基于时域或频域分析。然而,使用时域或频域分析可能不足以提供适当的压力检测结果。因此,本文提出了一种使用经验模态分解 (EMD) 和短期傅里叶变换 (STFT) 从 EEG 信号中提取考虑时空信息的特征的方法。在 EMD 中,信号首先被分解为表示有限数量信号同时保持时域的固有模态函数 (IMF),然后使用 STFT 将时域转换为时频域。采用支持向量机 (SVM) 对陌生室内环境中 VIP 的压力进行分类。将所提方法的性能与最先进的压力检测技术进行了比较。实验结果证明了所提技术优于现有技术
号质量,提高信噪比。特征提取根据特定的BCI范式所设计的心理活动任务相关的神经信号规律,采用时域、频域、空域方法或相 结合的方法提取特征。模式识别通过采用先进的模式识别技术或机器学习算法训练分类模型,针对特定的用户定制特征提取和解 码模型。 3. 控制接口:根据具体的通信或控制应用要求,控制接口把上述解码的用户意图所表征的逻辑控制信号转换为语义控制信号,并由
行为9-11并研究/实现脑机接口。12-14 fNIRS仪器特别适用于表征与听觉系统相关的功能性血流动力学变化。使用临床成像方式(例如X射线计算机断层扫描或磁共振成像)通常很难测量响应听觉皮层激活的大脑活动,因为仪器声音会增加背景噪音,这可能会破坏向受试者呈现的听觉刺激,从而严重影响实验结果。部分由于这些优势,最近的几项研究7、15-17已经使用商用 fNIRS 仪器来表征人类听觉皮层的功能刺激。例如,Chen 等人7 测量了听觉皮层对 440 和 554 Hz 纯音以及 1000 Hz 调频或颤音的血流动力学反应。 Hong 和 Santosa 16 进行了类似的实验,研究“自然”声音刺激(如英语和非英语单词、恼人的声音和自然声音)的血流动力学反应。Issa 等人 18 测量了在呈现 750 和 8000 Hz 的纯音刺激以及宽带噪声时听觉皮层的血流动力学变化。这些实验的主要目标是测量或成像听觉皮层内脑组织氧合的局部变化 - 这可以被认为是 fNIRS 实验的基本问题。人类的初级听觉皮层跨度约为 1650 mm3,位于颞叶的 Heschl 回内,并沿多个功能维度组织,其中最突出的是音调定位。19、20 因此,我们预计纯音刺激将激活听觉皮层的更局部区域,而宽带噪声将激活更广泛的区域。 19、21、22
图像增强(点处理):图像负片、阈值处理、有背景和无背景的灰度切片、幂律和对数变换、对比度拉伸、直方图均衡化和直方图规范空间域图像增强(邻域处理):用于图像增强的低通和高通滤波、空间滤波基础、生成空间滤波器掩模 - 平滑和锐化空间滤波图像变换:一维 DFT、二维离散傅里叶变换及其逆变换、二维 DFT 的一些属性、沃尔什-哈达玛、离散余弦变换、哈尔变换、倾斜变换频域图像增强:频域滤波基础、平滑和锐化频域滤波器
这些材料的厚度[13,14]、孔隙率[15]、多晶性[16]和生长形貌都会影响关键的设计参数,如质量密度(ρ)和热导率(κ)。例如,质量密度是爆炸材料爆轰性能的主要参数,因为它与由此产生的传播速度成正比。[17,18]另一方面,热导率可以为药物成分的无定形稳定性提供关键见解,这最终决定了它们的生物利用度。[3,19,20]对于薄膜热障,质量密度和热导率都起着重要作用,因为它们通常是被动的并受到瞬态热载荷。 [8] 考虑到工程表面的状况、[12] 微观缺陷、[21] 通往非晶态的新途径[20] 和新型沉积技术[22] 预计将共同作用以控制有机薄膜的微观结构,需要对热物理性质进行局部测量,以指导其合成和生长。然而,对有机薄膜而言,质量密度的局部测量是一个巨大的挑战。例如,掠入射 X 射线反射、光谱椭圆偏振术和横截面扫描电子显微镜要么需要超光滑表面[23]、有机物透明的波长[24],要么需要可能损坏熔点低的样品的离子暴露。[25,26] 另一方面,重量法测量质量和体积会得出整个样本的平均密度,而没有关于微观结构的信息。显然,需要一种能够非破坏性地探测有机薄膜局部质量密度变化的测量技术。频域热反射 (FDTR) 是一种成熟的泵探测测量技术,可用于测定块体和薄膜材料的热性质,探测尺寸与激光光斑尺寸相当(通常约为 10 μ m)。[27–29] 使用 FDTR,可以定期提取材料的热导率和体积热容量 (ρcp)。然后可以使用测得的体积热容量和体积比热容 (cp) 的假设来确定质量密度。为了测量有机薄膜的质量密度,
图3。许多正弦波构建了信号的频域表示。上排:时间域信号。下排:这些信号转换为频域。a)周期性正弦波在频域中以单个频率表示。b)周期性方波(厚,黑线)用许多特定的谐波频率(在顶部和底部底板上相应颜色的线)表示。从字面上看,这些(和更高的,未说明)的彩色线的总和在每个时间点都重建原始信号。c)与许多非特异性频率的组合表示非周期性的事件相关电位(ERP)信号(Retter等人,2020年的数据)。注意频域信号的几个属性:1)0频率bin反映了信号的平均幅度(DC偏移); 2)X轴分辨率是信号记录持续时间的倒数; 3)
完整作者名单: Muthaiah, Rajmohan;俄克拉荷马大学,航空航天与机械工程学院 Annam, Roshan Sameer;俄克拉荷马大学,航空航天与机械工程学院 Tarannum, Fatema;俄克拉荷马大学,航空航天与机械工程学院 Gupta, Ashish;俄克拉荷马州立大学 Garg, Jivtesh;俄克拉荷马大学,航空航天与机械工程学院 Arafin, Shamsul;俄亥俄州立大学,电气与计算机工程学院
摘要:控制量子光脉冲的时间模式形状具有广泛的范围应用于量子信息科学和技术。技术来控制带宽,允许在时间和频域中移动,并执行模式 - 选择性束 - 分解器样转换。但是,目前没有方案可以在时间模式上执行目标多模统一转换。在这里,我们提出了一种实用方法,以实现时间模式的一般转变。从理论上讲,我们可以在时间和频域中使用一系列相位操作来执行时间模式上的任何统一转换。数值模拟表明,使用实验可行的规格可以以超过95%的保真度执行时间模式上的几个关键转换。