稳定性的概念 - Routh的稳定性标准 - 稳定性和有条件的稳定性 - Routh稳定性的局限性。根源基因座概念 - 在根基因座上向g(s)h(s)添加极点和零的根位点的构造。单位 - IV:频率响应分析简介,频域规格图表图确定频域规格和从Bode图的Bode图稳定性分析中的传输函数。极性图 - 尼奎斯特图 - 相位边缘和增益边缘 - 稳定性分析。补偿技术 - 频率域中的滞后,铅,滞后补偿器设计。单位 - V:状态系统的状态空间分析状态,状态变量和状态模型,状态模型 - 微分方程和传输函数模型 - 图形图。对角度,从状态模型转移函数,求解时间不变状态方程 - 状态过渡矩阵及其属性。通过状态空间模型进行系统响应。可控性和可观察性,可控性和可观察性之间的二元性概念。教科书:
这项研究旨在开发脑部计算机界面,该界面可以使用脑电图(EEG)信号来控制电动轮椅。首先,我们使用Mind Wave Mobile 2设备从头皮表面捕获原始的EEG信号。使用快速傅立叶变换(FFT)将信号转换为频域,并过滤以监视注意力和放松的变化。接下来,我们执行了时间和频域分析,以识别五个眼手势的特征:打开,闭合,每秒眨眼,双眨眼和查找。基本状态是开放的眼球手势,我们将其余四个动作手势的特征与基本状态进行了比较,以识别潜在的手势。然后,我们构建了一个多层神经网络,将这些功能分类为控制轮椅运动的五个信号。最后,我们设计了一个实验轮椅系统,以测试所提出的方法的有效性。结果表明,脑电图分类高度准确且计算上有效。此外,不同个体的脑控制轮椅系统的平均性能超过75%,这表明这种方法的可行性。
摘要:心率变异性(HRV)是反映自主神经系统活性的连续心跳之间间隔的生理变化。传统上根据心电图(ECG信号)评估了此参数。地震心动图(SCG)和/或陀螺仪(GCG)用于监测心脏机械活动;因此,它们可以同时使用HRV分析和瓣膜心脏病(VHD)的评估。这项研究的目的是比较健康志愿者和瓣膜心脏疾病患者中的时间域,频域和非线性HRV指数,从心电图,地震心动图(SCG信号)和陀螺仪信号(GCG信号)获得。对时间域,频域和非线性心率变异性的分析是对来自29位健康男性志愿者注册的心电图和害经心电图进行了分析,并在美国纽约州纽约市哥伦比亚大学医学中心(美国,美国纽约市)注册了30名瓣膜心脏病患者。HRV分析的结果表明,尽管VHD对SCG和GCG波形的影响影响,但与ECG,SCG和GCG信号计算出的HRV指数有很强的线性相关性,并证明了HRV分析的可行性和可靠性。
超宽带 (UWB) 合成孔径雷达 (SAR) 被用于低频操作,以便从飞机或卫星上探测树叶下面和地面上的遮挡目标。虽然它具有明显的军事用途,但它也具有民用用途,例如地球物理研究、天气预报等。已经提出了许多图像处理算法,并将其应用于低频 UWB SAR。这些算法主要分为两类:频域和时域。本论文主要关注频域,特别是距离迁移算法 (RMA)。RMA 在范围内执行一维插值。此操作称为 Stolt 插值。在本论文中,我们研究了机载单基地 SAR 的图像处理。尽管这项研究是针对聚光灯 SAR 进行的,但由于天线波束宽度较大,因此 SAR 操作可以考虑介于聚光灯和条带图之间。主要目的是处理移动目标的散焦图像,并通过为 RMA 提出的方法重新聚焦它。该方法应用了平台和目标在运动时从它们之间的多普勒效应中产生的方位角新波数。这种聚焦方法还有助于确认图像中是否存在移动目标。为了进行模拟,UWB 低频参数取自 CARABAS II SAR 系统。
图解扩展是处理相关电子系统的中心工具。在热平衡下,它们最自然地定义了Matsubara形式主义。但是,从Matsubara计算中提取任何动态响应函数最终需要从虚构到实频域到实频域的错误分析延续。最近提出了[物理学。修订版b 99,035120(2019)],可以使用符号代数算法分析进行任何相互作用膨胀图的内部Matsubara总结。总结的结果是复杂频率而不是Matsubara频率的分析函数。在这里,我们应用了此原理并开发了一种示意的蒙特卡洛技术,该技术直接在实际频率轴上产生。我们介绍了在非平凡参数方面的掺杂32x32环状方晶格哈伯德模型的自我能量σ(ω)的结果,其中pseudogap的特征似乎靠近antinode。我们讨论了在实频轴上的扰动序列的行为,尤其表明,在使用截短的扰动系列上使用最大熵方法时,必须非常小心。在分析延续很困难的情况下,我们的方法对将来的应用具有巨大的希望,而中阶扰动理论可能会融合结果。
控制与数字计算机:早年史 Stuart Bennett 谢菲尔德大学自动控制与系统工程系,Mappin 街,谢菲尔德,S1 3JD,英国,电子邮件:s.bennett@sheffield.ac.uk 摘要:1950 年至 1970 年间,控制理论及其应用得到了广泛的发展。本文探讨了数字计算机及其相关技术的快速发展对控制系统领域的影响。简要概述了数字计算机和控制理论的发展,然后说明了数字计算机对过程控制应用的影响。版权所有 © 2002 IFAC 关键词:历史、数字计算机、过程控制、控制理论 1. 简介 1950 年左右出版的教科书阐述了战争期间用于设计(通过反复试验)线性单变量系统的频域技术。然而,正如 1951 年(英国克兰菲尔德)和 1953 年(美国纽约)会议的许多贡献者所解释的那样,典型的现实世界问题是非线性的、复杂的、多变量的,许多问题涉及离散数据和连续数据;他们还表示需要最佳的而不仅仅是足够的控制器性能。扩展频域方法以提供新的设计工具,并利用模拟计算机的支持技术和快速改进的电子元件,似乎是未来十年的议程。1948 年 6 月,在
实时 fMRI (rt-fMRI) 能够通过神经反馈自我调节局部大脑区域的神经活动。先前的研究表明,在伤害性刺激期间,前扣带皮层 (ACC) 和岛叶 (Ins) 的神经活动可以成功上调和下调。然而,这种自我调节能力在受试者中是不同的,可能与自上而下的认知疼痛控制能力有关。此外,特定大脑区域如何相互作用以成功调节伤害性处理和基于神经反馈的大脑调节尚不清楚。使用频域连接分析框架检查 ACC 和 Ins 的上调或下调,并评估疼痛强度和不愉快程度。我们发现成功的上调和下调是由 ACC 及其与 Ins 和次级体感皮层的功能连接介导的。成功的上调或下调与疼痛评级之间没有显著关系。这些发现表明,在调节 ACC 和 Ins 活动期间,参与伤害性处理的大脑区域之间存在功能相互作用,并且频域连接分析与实时 fMRI 的相关性也很高。此外,尽管神经调节成功,但疼痛评级没有变化,这表明疼痛是一种复杂的感知,可能比其他感觉或情绪过程更难改变。
气动弹性包括对飞机、运载火箭或桥梁等配置的结构动力学和非定常空气动力学之间相互作用的建模和理解。就其本质而言,气动弹性是一个多学科领域,因此可以包括其他学科,例如控制(气动伺服弹性)和热效应(气动热弹性)。在过去的几年中,气动弹性学领域已从其传统的线性频域方法转变为更现代的非线性基于计算的方法。
目标 1. 介绍基本类型的半导体电子器件和电路的操作和分析所使用的原理和技术,包括二极管和二极管电路、双极结型晶体管 (BJT) 和 BJT 放大器、金属氧化物半导体场效应晶体管 (MOSFET) 和 MOSFET 放大器以及运算放大器 (op-amps) 和运算放大器电路。 2. 介绍对具有正弦驱动源的一阶交流电路进行频域分析所使用的原理和技术。
光子学为探索非经典计算资源提供了一个出色的平台[1],因为纠缠可以通过光学非线性效应方便地产生[2-4],而线性操控协议可在多个自由度上实现[5-7]。人们做出了巨大的努力来产生和操控高维纠缠态,既用于量子力学的检验[8],也用于量子技术的应用[9]。人们致力于增加单个光子上编码的信息量[10],并实现高维通用线性运算,以扩展量子处理的能力,增强量子计算和模拟的多功能性[11]。高维量子编码已在光路域[12]、频域[4]、时间模域[13,14]和横向空间模域[15–17]中得到演示。对于第一个域,Reck等人[5]展示了如何使用由相位调制器和耦合器组成的级联基本块实现任意幺正算子。利用Reck等人的方案,在路径域中报道了维数从6到26的可编程矩阵算子和投影仪[9,12,18,19]。然而,仅实现了6×6的任意变换矩阵,而由于移相器和定向耦合器的排列复杂性不断增加,其他演示都是固定的或部分可调的。在频域,量子