在钙钛矿光电探测器中产生的光电流(I pH)的频率响应是成像或电信应用中的关键问题,尽管文献中讨论了它。目前的工作是在第一次获得MAPBI 3(MA:甲基氨基)perovskite perovskite polycrystalline薄膜上产生的I pH的完整表达。条件电路用于在平方调节激发激励下的1 V处提取I pH,其灵敏度小于1 nW,线性动态范围LDR> 200 dB;它允许准确确定I pH的模块以及相位,这通常在光电探测器系统中不报告。频域分析表明,I pH可以通过位于低(10 kHz)和高(39-250 kHz)切割频率的两个分数极点进行建模。最佳的几何参数和激发功能是针对更广泛的响应发现的,从而在最高250 kHz的速率上获得了最佳设备,并在高达100 kHz的方形光波的繁殖中繁殖。这些结果代表了对MAPBI 3(或其他钙钛矿材料)进行电气分析的重要策略,以设计后电子阶段,优化设备的优化并确定其功绩。
1国家职业健康研究所,工作心理学研究小组,奥斯陆,奥斯陆,挪威2号职业与环境医学司,公共卫生科学系,卡罗林斯卡研究所,卡罗林斯卡研究所,瑞典,瑞典,瑞典3,职业和环境医学司,伦敦大学,伦敦伦敦市伦敦市伦敦市,丹麦4号,伦敦康涅狄格州伦敦市,第5次,丹麦克里克,伦德大学4号。南丹麦大学,丹麦的丹麦大学,丹麦6号挪威生物经济研究所,ÅS,挪威,挪威7号国家工作环境研究中心,肌肉骨骼疾病和身体工作量,丹麦哥本哈根,丹麦8号,工业经济学和技术管理系8 Trondheim,挪威
对于可穿戴传感器而言,能源效率至关重要,尤其是在设备不进行处理而是采集生物信号以供后续分析的阶段。本研究重点关注如何改善可穿戴设备在这些采集阶段的功耗,这是一个关键但经常被忽视的方面,它会严重影响设备的整体能耗,尤其是在低占空比应用中。我们的方法通过利用特定于应用的要求(例如,所需的信号配置文件)、平台特性(例如,时钟发生器的转换时间开销和电源门控功能)和模拟生物信号前端规格(例如,ADC 缓冲区大小)来优化功耗。我们改进了在低功耗空闲状态和活动状态之间切换以存储采集数据的策略,引入了一种为这些状态选择最佳频率的新方法。基于对超低功耗平台和不同生物医学应用的几个案例研究,我们的优化方法实现了显着的节能效果。例如,在 12 导联心跳分类任务中,与最先进的方法相比,我们的方法可将总能耗降低高达 58%。这项研究为频率优化提供了理论基础和实用见解,包括表征平台的功率和开销以进行优化。我们的研究结果显著提高了可穿戴设备采购阶段的能源效率,从而延长了其使用寿命。
集成克尔量子频率梳 (QFC) 具有产生多个可扩展量子态的潜力,已成为宽带纠缠的紧凑、稳定和基本资源。在这里,我们构建了一个通过片上氮化硅微环谐振器设计二分纠缠 QFC 的平台。通过建立克尔非线性微谐振器的系统量子动力学,我们的平台可以支持多达 12 个连续变量量子模式,形式为受磁滞影响的六个同时双模压缩对。频率模式对的纠缠度取决于谐振器结构和环境温度。通过调节腔体温度,我们可以在特定的注入泵浦功率和泵浦失谐下优化纠缠性能。我们全面的 QFC 设计流程和纠缠分布控制可以改善纠缠的产生和优化。
本文由内布拉斯加大学林肯分校 DigitalCommons 电气与计算机工程系免费提供给您,供您免费访问。它已被内布拉斯加大学林肯分校 DigitalCommons 授权管理员接受并纳入电气与计算机工程系:学位论文、毕业论文和学生研究。
计划委员会:Carlota Canalias,量身定制的光子(瑞典);空军研究实验室Shekhar Guha。(美国); Christelle Kieleck,Fraunhofer Optronics,系统技术和图像评估IOSB(德国); Kentaro Miyata,Riken Ctr。高级光子学(日本);丽塔·彼得森(Rita D. Peterson),大学。; Valentin Petrov,用于非线性光学和短期光谱法的最大生育式Institut(德国);肯尼思·施普勒(Kenneth L. Schepler),克里奥尔(Creol),奥光子学院,大学。; Peter G. Schunemann,Onsemi(美国); Chaitanya Kumar Suddapalli,塔塔基础研究所(印度); Nathalie Vermeulen,Vrije Univ。布鲁塞尔(比利时); Konstantin L. Vodopyanov,Creol,光子学院,大学。;德克萨斯州A&M大学的Vladislav V. Yakovlev。(美国); Haohai Yu,山东大学。(中国)
缩写列表:AG,角回;CES,经颅电刺激;CI,置信区间;COBIDAS,数据分析和共享最佳实践委员会;CoG,重心;DLPFC,背外侧前额皮质;EEG,脑电图;FEF,额叶眼区;FFT,快速傅里叶变换;IAF,个体阿尔法频率;ICA,独立成分分析;IPS,顶内沟;ITPC,经颅间相位相干性;LTD,长期抑郁;LTP,长期增强;mA,毫安;MD,平均差异;MEEG,脑磁图和脑电图;MEG,脑磁图;MRI,磁共振成像;MT,运动阈值;NIBS,非侵入性脑刺激;OSF,开放科学框架;otDCS,振荡经颅直流电刺激; PAF,峰值 alpha 频率;PICO,参与者,干预,控制,结果;PRISMA,系统评价和荟萃分析的首选报告项目;PROSPERO,国际系统评价前瞻性注册库;RINCE,减阻非侵入性皮层电刺激;rTMS,重复经颅磁刺激;SE,标准误差;SM,感觉运动;STDP,尖峰时间依赖性可塑性;SWiM,无需荟萃分析的综合;tACS,经颅交流刺激;TBS,Theta 爆发刺激;tDCS,经颅直流刺激;tES,经颅电刺激;TMS,经颅磁刺激;tRNS,经颅随机噪声刺激。
来自连续波驱动的Kerr-Nonlinear微音主管的频率梳已演变为一项关键的光子技术,并从光学通信到精度光谱法进行了应用。对于许多这些应用来说,是对梳子定义参数的控制,即载波 - eNvelope偏移频率和重复率。 一种控制两个自由度的优雅而全面的方法是将次级连续波激光器适当地注入到谐振器中,其中一个梳子线锁定在其上。 在这里,我们通过实验研究了微孔孔梳子中的侧带注射锁定,并在宽的光学带宽上研究了锁定范围和重复速率控制的分析缩放定律。 作为一个应用程序示例,我们证明了光频分割和重复率相位噪声降低至自由运行系统噪声的三个数量级。 提出的结果可以指导侧带注入锁定的,参数生成的频率梳子的设计,并具有低噪声微波生成的机会,具有简化的锁定锁定方案的紧凑型光学时钟,以及更一般而言的,从Kerr-Nonlinelear resonators获得的全面稳定的频率梳子。 ©2023作者。 所有文章内容(除非另有说明,否则都将根据创意共享归因(cc by)许可(http://creativecommons.org/licenses/4.0/)获得许可。 https://doi.org/10.1063/5.0170224是对梳子定义参数的控制,即载波 - eNvelope偏移频率和重复率。一种控制两个自由度的优雅而全面的方法是将次级连续波激光器适当地注入到谐振器中,其中一个梳子线锁定在其上。在这里,我们通过实验研究了微孔孔梳子中的侧带注射锁定,并在宽的光学带宽上研究了锁定范围和重复速率控制的分析缩放定律。作为一个应用程序示例,我们证明了光频分割和重复率相位噪声降低至自由运行系统噪声的三个数量级。提出的结果可以指导侧带注入锁定的,参数生成的频率梳子的设计,并具有低噪声微波生成的机会,具有简化的锁定锁定方案的紧凑型光学时钟,以及更一般而言的,从Kerr-Nonlinelear resonators获得的全面稳定的频率梳子。©2023作者。所有文章内容(除非另有说明,否则都将根据创意共享归因(cc by)许可(http://creativecommons.org/licenses/4.0/)获得许可。https://doi.org/10.1063/5.0170224https://doi.org/10.1063/5.0170224
摘要中红外的光学频率梳是一种强大的气体传感工具。在这项研究中,我们证明了一个简单的中红外双弯曲光谱仪,在Linbo 3波导中覆盖3–4 µm。基于低功率激光器系统,通过linbo 3波导中的脉冲差差频率产生来实现中红外梳子。我们在超脑生成之前构建疗法前的管理,以控制泵和信号脉冲的时空比对。对于3-4 µm idler的产生,超副局部直接耦合到the的定期螺旋的Linbo 3波导中。基于这种方法的中红外双弯曲光谱仪在25 THz覆盖范围内提供了100 MHz的分辨率。为了评估光谱法的适用性,我们使用双梳光谱仪测量甲烷光谱。测量结果与Hitran数据库一致,其中残留的根平方为3.2%。这种提出的方法有望在芯片上开发综合且坚固的中红外双弯曲光谱仪进行感测。