摘要 本文讨论了分数阶 PDF-(1+PI) 控制器在孤立微电网中频率调节的应用,该控制器由 coot 优化算法调整。微电网由生物柴油发电机、生物质热电联产、ORC 太阳能热电厂、微型水力涡轮发电机和风力涡轮发电机组成。此外,还考虑了电池存储和燃料电池。这项工作致力于提出一种有效的方案,该方案可以作为社区或农场的模型,通过生物能源最大限度地减少浪费,并有效地在发电和需求之间实现同步,同时最大限度地减少频率偏差。针对各种实际场景测试了所提出的控制器。结果表明,分数阶 PDF-(1+PI) 表现出比 PIDF 和整数阶 PDF-(1+PI) 控制器更好的瞬态响应。关键词 1 分数阶 PDF-(1+PI) 控制器、基于生物能源的发电机、负载频率控制、微电网、coot 优化算法
摘要:稳定的电源已成为当前技术和趋势时代的关键因素。尽管电源系统存在多个稳定性问题和原因,但频率频率在正常操作中起着至关重要的作用,因此具有显着频率偏差的系统可以导致整个电源系统的不必要停电。随着电力电子转换器(PEC)基于基于的技术的快速增长以及非同步发电机的巨大渗透,现代电力系统迄今变得越来越复杂。本文对现代电力系统中发生的稳定性问题进行了全面研究,这主要是由于基于PEC的技术整合。讨论了不稳定的电力系统的深入理由和影响,以及它们的控制技术,以产生清晰的理解。此外,关于过去发生的一些重要事件,讨论了电力系统中频率稳定性的重要性。本文还讨论了一些可以执行的潜在技术,以克服升级电源系统中现有和/或即将到来的挑战。
摘要:2020 年 9 月,美国联邦能源管理委员会 (FERC) 发布了第 2222 号命令,向小容量分布式能源 (DER) 开放批发市场,承认它们通过提供大容量电网服务在提高运营效率方面的潜力。因此,需要一种能够连接输电和配电 (T&D) 模拟并评估 DER 提供大容量电网服务影响的联合仿真能力。在本文中,我们提出了一个新型集成 T&D 联合仿真平台,该平台结合了 T&D 系统模拟器、DER 聚合器/组策略和联合仿真协调器。采用行业标准通信协议来模拟真实情况。选择二次频率调节作为代表性大容量电网服务,并模拟 DER 对频率调节信号的响应。美国科罗拉多州太阳能丰富的配电馈线的模拟结果展示了如何使用 T&D 联合仿真设置来评估 DER 的贡献以最大限度地减少大容量电网频率偏差。
本研究的目的是分析电池储能系统 (BESS) 如何支持包含水力发电厂的孤岛微电网的频率和电压稳定性。对位于瑞典的两个不同的微电网进行了评估。在 PowerFactory 工具中进行建模和动态模拟。结果表明,使用 BESS 可以改善频率和电压控制。但是,在允许的 ± 1 Hz 限制下,并非所有包括 BESS 的模拟场景都符合要求。BESS 和发电机容量之间的巨大差异可能是造成这种情况的原因。通过划分较大的负载以获得较小的负载,可以减少频率偏差。此外,通过根据孤岛模式操作调整系统 PID 参数,可以实现更快的调节。该系统根据主从控制策略运行,水力发电是具有电压控制的主单元,BESS 是具有 PQ 控制的从单元。运行孤岛微电网的能力可以确保向居民和社会的重要功能提供电力。通过利用 BESS 提高电力稳定性,间接减少了 CO 2 的排放。由于 BESS 的成本预计将迅速下降,因此它们将在世界各地得到利用。
摘要:本研究旨在解决有源配电网(ADN)不稳定能源接入问题,包括频率调节困难、ADN 电压偏差增大、运行安全性和稳定性下降等。本研究建立了一个两阶段主要化配置模型来识别和理解波动性能源如何影响混合储能系统(HESS)。利用风能、太阳能和负荷的日预报数据来检查带有铅酸电池和超级电容器(SC)的 ADN 和 HESS。在这个规划阶段,综合成本、网络损耗和节点电压偏差被视为多目标优化模型中的最优目标,而改进的多目标优化粒子群方法用于求解容量配置的初始值。在运行阶段,以风电输出功率波动、HESS频率偏差等优化目标求解SC配置能力修正值,并利用加入混沌机制的量子粒子群算法对ADN中不同类型机组的输出进行进一步优化,基于案例33个节点实例进行仿真研究,确定最佳配置结果,仿真结果验证了模型的可行性。
摘要:光伏 (PV) 电池非常昂贵,因为硅元素并不便宜。通常,光伏电池最好以最高效率使用。因此,光伏电站强调从光伏电池中提取最大功率。当无惯性光伏电站大量集成到电网中时,在负载扰动下保持系统稳定性的问题非常困难。针对这一问题,控制拓扑是一种利用系统频率偏差作为控制器反馈的方法,使光伏电池能够保持系统稳定性。为了实现这一点,光伏电池在最大功率点跟踪 (MPPT) 下运行。这允许光伏电池在伪最大功率点跟踪 (PMPPT) 下运行,从而可以在不使用电池进行存储的情况下以备用功率容量运行光伏电池。控制策略已在光伏系统的两级功率转换模型上实施。仿真结果表明,与 MPPT 技术相比,所提出的控制 PMPPT 拓扑在频率调节能力方面更为有效。
供电频率是交流电压和电流在正向峰值和反向峰值之间振荡的每秒周期数 (赫兹) 的度量。Essential Energy 配电系统供电的标称频率为 50 Hz (赫兹)。Essential Energy 不控制供电频率,也不能保证频率符合任何标准。频率由发电机自动维持,只要发电和负载之间保持平衡,频率就会稳定在 50 Hz 或非常接近 50 Hz。国家电力规则规定的“正常工作频带”设定为 49.85 Hz 至 50.15 Hz。有时会超出这些水平,在极少数情况下,如果频率偏差过大,供电可能会中断。除非由于电网持续过度的频率变化而导致大面积供电中断,否则大多数客户的设备不会受到频率变化的影响。Essential Energy 的目标是将 Essential Energy 所了解的超出国家电力规则所规定的标准的频率偏移报告给 AEMO。嵌入式发电机频率设置的指导包含在新南威尔士州服务和安装规则中。低频不得低于 48Hz,超频不得高于 52Hz。
摘要 在过去的二十年里,变速风力涡轮机 (VSWT) 逐渐取代了传统发电。然而,风速的变化和随机性可能导致较大的频率偏差,特别是在风能集成度高的孤立电力系统中,这种集成会导致惯性不足。本文提出了一种混合水电-风电-飞轮频率控制策略,用于 100% 可再生能源发电的孤立电力系统,同时考虑风力变化和发电机跳闸。VSWT 和飞轮包括传统的惯性频率控制。频率控制策略涉及 VSWT 的转速和飞轮的充电状态 (SOC) 变化,这可能会影响机械元件的磨损并降低频率控制作用的效率。水电控制器还会跟踪 VSWT 的转速偏差和飞轮 SOC,以相应地修改发电功率。这种混合频率策略显著减少了频率偏移、VSWT 的转速偏差和飞轮的 SOC。为了减少水力发电厂的磨损,作者提出了一种额外的控制策略并进行了评估。本文还介绍了基于位于 El Hierro(西班牙加那利群岛)的孤立电力系统的案例研究结果,并进行了广泛讨论。
随着风电大规模接入电力系统,系统频率稳定性问题凸显,电池储能系统以其快速响应能力被视为提高系统调频性能的关键解决方案。此外,风储联合调频系统建设已发展多年,其中风储系统的容量优化配置越来越受到重视。但现有的容量配置大多忽略了风电机组参与一次调频引起的二次频率跌落,值得进一步研究。本文从SFD角度研究风储联合调频系统的最优容量,基于风储联合调频模型,推导了考虑SFD的两级系统频率响应时域表达式。接下来考虑风储联合调频的技术经济特点,以两阶段最大频率偏差之和及储能成本最小为目标,建立储能容量配置优化模型。采用多目标群体算法(MSSA)对优化模型进行求解,得到风储联合调频参数设定值及最优储能容量。在MATLAB中验证了所提方法的有效性。仿真结果表明,所提模型能有效改善系统调频效果,保证容量优化配置,具有较好的经济性。
摘要:在过去十年中,人们越来越关注环境保护。例如,碳氢化合物向海洋中排放的生态影响是人们最关心的问题。评估其环境影响的一种方法是考虑污染物的排放量。有效的早期检测将有助于提前发现泄漏,并采取必要的缓解措施来控制泄漏量。已制定标准和指南,用于在海底模板中开发有效的传感器网络,以进行监测和数据收集。传感器提供有关其正在监测的模板的异构信息。根据最近对风险评估的研究,对特定系统的知识水平是一个内在特征,应在评估和评价阶段予以考虑,以更好地管理风险水平的潜在增量。传感器网络提供的信息可从这个角度使用。传感器可以功能性地放置在故障树分析中,并更新有关频率偏差的信息。本文的工作重点是使用来自海底传感器网络的此类信息进行风险管理。提供了一个来自挪威大陆架环境敏感区域的石油和天然气行业的真实参考案例,用于测试建议的方法。案例研究是指对井口模板的漏油进行海底监测。案例研究中的见解强调了传感器数据分析如何改善风险管理并支持运营决策。