这项研究通过将其动态行为系统地与两个其他实验性细胞设置进行比较,对18650锂电池的阴极和阳极进行了深入分析:(i)在三电极设置和(ii)对称性阴极和ANODODE和ANODODE和ANODE细胞中进行全细胞。该分析涉及将细胞进行电化学阻抗光谱,放松时间的分布以及不同电荷处的非线性频率响应分析。我们的发现突出了分析所有三个设置中电极的重要性。在电极分辨细胞中还观察到了全细胞的阻抗和非线性频率响应特征。对称细胞表现出更强的阻抗和非线性响应,但它们允许识别单个细胞的贡献,而没有由参考电极引起的电感回路的伪像。可以清楚地识别通过不同细胞设置,阴极和阳极过程及其各自的特征频率之间的非线性信号和特征峰。©2024作者。由IOP Publishing Limited代表电化学学会出版。这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。[doi:10.1149/1945-7111/ad5ef9]
摘要 可再生能源 (RER) 具有诸多优势,正在迅速发展以满足全球很大一部分能源需求。据预测,RER 发电在未来能源行业的重要性将继续增加。尽管 RER 具有众所周知的所有优势,但它的整合对系统稳定性和可靠性提出了一些挑战。RER 的低惯性特性和间歇性输出会给本来就不稳定的电网频率带来额外的变化。随着 RER 逐渐取代传统发电机,系统调节能力和可靠性会降低。本文回顾了 RER 整合对系统频率响应的挑战以及这些挑战如何影响系统可靠性。讨论了在确保系统安全性的同时减轻与增加 RER 整合相关的挑战的高级方法,并以简明的形式提供了必要的数学背景。开发了一个基于稳定性约束确定 RER 渗透最大水平的模型。讨论了推进 RER 整合的新兴方法。
即使发电已跳闸,发电机注入的电力已从互连中移除,负载仍会继续使用相同数量的电力。“能量守恒定律” 3 要求,如果要“守恒”能量平衡,必须向互连提供 1000 MW。 这额外的 1000 MW 电力是通过提取互连上所有同步发电机和电动机的旋转质量中存储的动能产生的 - 本质上是将该设备用作一个巨大的飞轮。提取的能量提供维持互连上功率和能量平衡所需的“平衡惯性” 4 功率。这种平衡惯性功率是由发电机旋转的惯性质量对互连上旋转设备速度减慢的阻力产生的,这既提供了存储的动能,又降低了互连的频率。第二张图“主频率控制 - 频率响应 - 图 2”中说明了这一点,橙色点代表平衡惯性功率,恰好覆盖并抵消了功率不足。
4 包络线是电力系统调节中使用的一个概念,表示为电池充电状态管理提供灵活性的领域。EFR 定义了“宽”和“窄”包络线,每个包络线都与一个单独的产品相关,该产品由 a) 死区和 b) 允许的 9% 的电池标称容量进行充电或放电操作定义。
1.1. 合规执行机构:“合规执行机构”是指 NERC 或区域实体,或由相关政府机构指定的任何实体,它们在各自的管辖范围内负责监控和/或执行强制性和可执行的可靠性标准。1.2. 合规监控期和重置时间框架:如果发电单元/发电设施完成缓解计划并实施纠正措施以满足标准的 R9 和 R10 要求,并且如果获得 BA 和合规执行机构的批准,则发电单元/发电设施可以在 FME 期间的下一次性能中开始新的滚动事件平均性能。这将计为性能计算中的第一个事件,并且实体将在连续 12 个月或每个 R9 和 R10 的 8 个事件后获得平均频率性能得分。1.3. 证据保留:以下证据保留期确定实体需要保留特定证据以证明合规的时间段。例如,当下文规定的证据保留期短于自上次审计以来的时间时,合规执法机构可能会要求实体提供其他证据,以证明其自上次审计以来的全时段内都是合规的。
低惯性电力系统中的系统运营商通常必须削减可再生能源 (RES),并采用严格的低频负荷削减 (UFLS) 方案,以确保在发生导致发电损失的事件后频率安全。这种方法限制了系统中 RES 的最大渗透率,并导致负荷损失。为了解决这些问题,可以使用快速频率响应 (FFR) 方案来限制扰动后的频率最低点,并减少对 RES 削减和 UFLS 的需求。本文深入探讨了扰动后动能 (KE)、频率遏制储备 (FCR) 和最低点之间的相互作用,这些是导致 RES 削减的驱动机制。然后,它分析了 FFR 对最低点的影响及其缓解 RES 削减问题的能力。低惯性孤岛塞浦路斯动态模型用于量化结果并展示对实际系统的影响。
在钙钛矿光电探测器中产生的光电流(I pH)的频率响应是成像或电信应用中的关键问题,尽管文献中讨论了它。目前的工作是在第一次获得MAPBI 3(MA:甲基氨基)perovskite perovskite polycrystalline薄膜上产生的I pH的完整表达。条件电路用于在平方调节激发激励下的1 V处提取I pH,其灵敏度小于1 nW,线性动态范围LDR> 200 dB;它允许准确确定I pH的模块以及相位,这通常在光电探测器系统中不报告。频域分析表明,I pH可以通过位于低(10 kHz)和高(39-250 kHz)切割频率的两个分数极点进行建模。最佳的几何参数和激发功能是针对更广泛的响应发现的,从而在最高250 kHz的速率上获得了最佳设备,并在高达100 kHz的方形光波的繁殖中繁殖。这些结果代表了对MAPBI 3(或其他钙钛矿材料)进行电气分析的重要策略,以设计后电子阶段,优化设备的优化并确定其功绩。
最近的研究表明,储能系统 (ESS) 可以分布在模块化多级转换器 (MMC) 中,以增强高压直流 (HVDC) 换流站,从而提供辅助服务。在这种情况下,DC-DC 转换器必须将储能元件连接到子模块 (SM) 电容器。然而,由于 MMC 的工作原理复杂,转换器拓扑的选择及其控制并不简单。本文提出了一种合适的接口转换器和控制策略来解决这些问题。特别强调了转换器的建模,以突出 SM 内部的所有交互并简化控制器的设计。最后,缩小的原型验证了所提解决方案的有效性。