首字母缩略词/缩写 扩展名称 AC 交流电 AEMO 澳大利亚能源市场运营商 AER 澳大利亚能源监管机构 AEMC 澳大利亚能源市场委员会 AGC 自动发电控制 ARENA 澳大利亚可再生能源机构 BOP 电厂平衡 BSSA 电池存储服务协议 C&AA 连接和访问协议 DC 直流电 DELWP 维多利亚州政府环境、土地、水利和规划部 DUID 调度单元标识符 DUOS 配电系统使用 Edify Edify Energy Pty Ltd 及其相关实体 EPC 工程、采购和施工 ESS 储能系统 FCAS 频率控制辅助服务 FIA 全面影响评估 FRMP 财务责任市场参与者 GESS Gannawarra 储能系统 GPS 发电机性能标准 GSF Gannawarra 太阳能农场 GUI 图形用户界面 HV 高压 ICCP 控制中心间通信协议 JV 合资企业 LGC 大规模发电证书 MLF 边际损耗系数 MV 中压 NEM 国家电力市场 NER 国家电力规则 NMI 国家计量标识符 NSP 网络服务提供商 OEM 原始设备制造商 项目 GESS RCR RCR Tomlinson Limited SCADA 监控和数据采集 SPV 特殊用途车辆 TUOS 传输 系统使用 WIRCON Wircon Energie 9 GmbH 及其相关实体
Yadlamalka Energy 代表了南澳大利亚的一项创新型可再生能源计划,包括一个共置的钒液流电池 ( VFB ) 储能系统(2 MW – 8 MWh AC )和太阳能光伏 ( PV ) 发电场(6 MWp DC ),集成在直流耦合逆变器后面。 VFB 系统经过战略性设计,可利用南澳大利亚州显著的日内价格波动,促进电力从中午到晚上和早上的高峰时段的时间转换。此外,该项目还准备积极参与频率控制辅助服务 ( FCAS ) 市场,为电网的稳定做出贡献。在经验丰富的可再生能源投资者 Andrew Doman 先生的领导下,Yadlamalka Energy 组建了一支高素质团队,包括项目经理 SwitchCo、钒液流电池技术提供商 Invinity Group 和建设合作伙伴 NGE。项目团队的协作努力促进了各个学科对项目交付的高度重视。目前,该项目正在按计划和修订后的预算内进行,调试测试的最后阶段正在进行中。本经验教训报告 - 第 2 号概述了整个项目生命周期中管理的关键近期问题。主要经验教训涵盖施工和供应链管理以及监管事项,突出了该项目对持续改进和优化的承诺。随着 Yadlamalka Energy 项目接近调试阶段的完成,它仍在修订预算的范围内。值得注意的是,在获得 SAPN 批准后,该站点自 2023 年 12 月 19 日起一直为南澳大利亚电网做出贡献。正式启动日期定于 2024 年 4 月。
辅助服务市场 (ASM) 在可再生能源电力系统中的重要性日益提高。然而,与不同地区的能源市场 (EM) 相比,辅助服务市场仍然开发较少。对于有限的能源单位,例如电池储能系统 (BESS),研究两个市场的相对可预测性至关重要,因为较难确定产品的合适竞标时间更难确定,因此收入也不太确定。本文建立了三个北欧国家(丹麦、芬兰和挪威)的两个市场的预测模型,以量化它们可预测性的差异。频率控制正常储备 (FCR-N) 被视为北欧辅助服务产品的一个案例。315648 个数据点的数据集包含三年(2019-2021 年)的每小时 FCR-N 和现货市场收入。广义加性模型 (GAM) 用于使用每小时和每日模式的平滑曲线来制定未来一周的预测。该预测既可以进行国家间(不同国家的同一市场之间)的比较,也可以进行国家内(同一国家的不同市场之间)的比较。结果表明,除丹麦外,北欧国家的 FCR-N 市场比其各自的现货市场更难预测,因为丹麦的每小时容量是固定的。此外,尽管北欧各国的市场需求相似,但 FCR-N 预测模型的平滑曲线却各不相同。这与北欧现货市场形成了鲜明对比,北欧现货市场的平滑曲线表明各国之间的市场行为相似。因此,对于执行多市场竞标的 BESS 单位来说,除了每小时价格之外,考虑市场可预测性的差异也至关重要。参考详情
2020 年 5 月摘要 2012 年至 2017 年期间,澳大利亚国家电力市场 (NEM) 一直问题重重,包括煤电厂突然关闭、国内天然气市场吃紧以及电价大幅上涨。随后从 2017 年到 2020 年,供应方做出的反应是一个投资超级周期——12000MW 的电厂承诺,涉及 105 个项目,总投资超过 200 亿美元,其中大部分是可变可再生能源。出现的问题包括进入滞后、连接延迟、系统频率超出正常频带、系统强度下降、频率控制辅助服务成本上升以及运营商对安全约束调度过程的干预增加。市场机构措手不及。然而,市场机构并没有发现和解决紧急问题,而是提出了一系列市场重新设计提案,重点关注未来投资和资源充足性。在本文中,我们分析了近期的 NEM 表现,发现所有紧迫问题都与实时电力系统安全有关,而非资源充足性,并反映了因创纪录水平的同时(异步)新进入而导致的变化率问题。要解决这个问题,需要建立“缺失市场”来恢复电力系统的弹性。根本的市场重新设计是一种干扰——它很可能成为必要,但对于为什么会这样以及何时需要这样做,并没有统一的共识。就目前而言,没有任何改革提案能够接近解决 NEM 现有的紧迫问题。关键词:可再生能源、能源市场、投资周期 JEL 代码:D24、G31、L94。
neoen(ISIN:FR0011675362,股票:Neoen)是全球主要可再生能源的领先生产商之一,已成功实施了Tesla的虚拟机模式(VMM),其150 MW / 193.5 MW / 193.5 MWH Hornsdale Power Reserve(HPR),澳大利亚的第二大LIRITH LITH LITH LITHIUM-IN-ION LITHIUM-IN-ION LITHIUM-ION LITHIUM-IN-IN-IN-IN-IN-IN LITH LITH LITH LITH LITH LITH。HPR已获得AEMO的批准,因为它的网格形成逆变器开始向南澳大利亚州的网格提供惯性服务。在电力网络的正常运行和重大干扰之后,都需要最低水平的惯性与频率控制服务。惯性传统上是由天然气或发电机提供的。热电厂的关闭和可再生能源的增加导致网格中的惯性短缺,这是一个严重的网络问题,电池现在可以克服。在应对这些挑战时,这种创新的解决方案代表了全球意义的突破。位于网络的关键部分,HPR将自动为南澳大利亚电网提供必要的稳定性,在过去的12个月中,南澳大利亚电网已达到64%的可再生渗透。hpr现在有能力贡献约2,000兆瓦的同等惯性,或该州网络中预计短缺的15%,该网络中有170万人和150,000个企业提供服务。惯性服务是Neoen电池令人印象深刻的工具包的宝贵补充,该工具包已经包括能量套利,快速响应和频率调节。neoen的G Ride级电池既快速又灵活,并且能够同时使用其能力的不同分数,以响应网络和市场中产生的需求,并能够同时向客户提供多个服务。
在体育界,Covid-19大大削减了正常活动,并导致了许多国家和国际活动的推迟和取消。 在过去的一年中,在运动中发生的几项研究Covid-19的传播是在运动中发生的,而严格的感染控制程序在防止SARS-COV2传播方面是核心,但精英和竞争性的COVID-19疫苗接种问题,但休闲运动员正在迅速成为个人运动员,体育团队和组织的紧迫问题。 运动临床医生现在面临着几个重要的考虑因素,包括运动对疫苗功效的影响,潜在的副作用,给定运动员或一群运动员的最佳疫苗类型(如果选择变得相关),有关疫苗时间的建议,以及疫苗接种的时间,以及疫苗接种是否可以阻止SARS-COV-2传输。在体育界,Covid-19大大削减了正常活动,并导致了许多国家和国际活动的推迟和取消。在过去的一年中,在运动中发生的几项研究Covid-19的传播是在运动中发生的,而严格的感染控制程序在防止SARS-COV2传播方面是核心,但精英和竞争性的COVID-19疫苗接种问题,但休闲运动员正在迅速成为个人运动员,体育团队和组织的紧迫问题。运动临床医生现在面临着几个重要的考虑因素,包括运动对疫苗功效的影响,潜在的副作用,给定运动员或一群运动员的最佳疫苗类型(如果选择变得相关),有关疫苗时间的建议,以及疫苗接种的时间,以及疫苗接种是否可以阻止SARS-COV-2传输。
a.任务。空军发展测试中心 (AFDTC) 位于佛罗里达州埃格林空军基地。AFDTC 的总体任务是规划、进行和评估美国和盟国的非核弹药、电子战、目标捕获、武器运载、基地入侵保护和支持系统的测试。b.物理描述。埃格林的陆地测试区占地 463,000 英亩,而其水上测试区覆盖墨西哥湾的 86,500 平方英里。埃格林空军基地测试综合体由许多单独的测试区组成,包括丛林条件、连绵起伏的丘陵、森林茂密的区域、空旷的平坦区域和水域。下面简要介绍 AFDTC 测试综合体的主要测试支持能力。(1) 电磁测试环境 (EMTE)。埃格林维护一个 EMTE,以支持开发和运营机构评估电磁战 (EMW) 设备、组件、系统和技术。EMTE 能够获取有关 EMW 设备性能的数据,以用于开发 EMW 战术和技术。EMTE 是一个跟踪和搜索雷达综合体,在不同频带和模式下运行,为 EMW 评估提供灵活的测试设施。所有跟踪雷达数据都传输到中央控制设施 (CCF),该设施能够接收、记录、处理并将 EMTE 数据重新传输到站点,以进行闭环实时 EMW 测试任务。(2) 通用站点。通用测试场地和综合设施为许多 AFDTC 测试任务职责提供通用仪器支持,而不是主要支持特定任务功能。• 测试场地 (TS) A-3、A-13、A-20、C-10 和 D-3 包含主要跟踪雷达系统,这些系统与其他支持仪器的集成程度非常复杂。测试场地 D-3 和 A-3 包含冗余 UHF 销毁发射器 (1 kW),用于远程弹药和车辆所需的飞行安全系统。• AFDTC 的主要遥测功能位于固定 TSs B-4A 和 D-3。货车和固定装置 (130 号建筑) 中提供其他设备。实时数据可以通过微波中继到中央控制设施 (CCF)。• TS B-4B 的地面监控设施 (GMF) 接收来自主动机载 ECM 设备的辐射信号。GMF 可以显示、测量和记录频谱功率特性。FCA 提供• TS A-6 的频率控制和分析 (FCA) 设施监测和记录 1 MHz 至 18 GHz 之间无线电频带的信号。
[1] MILLER DL, SMITH NB, BAILEY MR 等。治疗性超声应用和安全注意事项概述[J]。超声医学杂志,2012,31 (4): 623-634。[2] WANG J, ZHENG Z, CHAN J 等。用于血管内超声成像的电容式微机械超声换能器[J]。微系统纳米工程,2020,6 (1): 73。[3] JIANG X, TANG HY, LU Y 等。基于与 CMOS 电路键合的 PMUT 阵列的发射波束成形超声指纹传感器[J]。IEEE 超声铁电频率控制学报,2017,PP (9): 1-1。[4] CHEN X, XU J, CHEN H 等。利用多频连续波的 pMUT 阵列实现高精度超声测距仪[J]。微机电系统,2019 年。[5] CABRERA-MUNOZ NE、ELIAHOO P、WODNICKI R 等人。微型 15 MHz 侧视相控阵换能器导管的制造和特性[J]。IEEE 超声铁电和频率控制学报,2019 年:1-1。[6] LU Y、HEIDARI A、SHELTON S 等人。用于血管内超声成像的高频压电微机械超声换能器阵列[S]。IEEE 微机电系统国际会议;2014 年。[7] ZAMORA I、LEDESMA E、URANGA A 等人。用于成像应用的具有 +17 dB SNR 的单片 PMUT-on-CMOS 超声系统[J]。 IEEE Access,2020,页(99):1-1。[8] JUNG J,LEE W,KANG W 等。压电微机械超声换能器及其应用综述[J]。微机械与微工程杂志,2017,27 (11):113001。[9] BERG S,RONNEKLEIV A。5F-5通过引入有损顶层降低CMUT阵列中膜之间的流体耦合串扰[S]。超声波研讨会;2012年。[10] LARSON J D。相控阵换能器中的非理想辐射器[S]。IEEE;1981年。[11] NISTORICA C、LATEV D、SANO T 等。宽带宽、高灵敏度的高频压电微机械换能器[S]。 2019 IEEE 国际超声波研讨会(IUS);2019: 1088-1091。[12] 何丽梅,徐文江,刘文江等。基于三维有限元仿真的二维阵列压电微机械超声换能器性能和串扰评估[S]。2019 IEEE 国际超声波研讨会(IUS);2019。[13] PIROUZ A、MAGRUDER R、HARVEY G 等。基于 FEA 和云 HPC 的大型 PMUT 阵列串扰研究[S]。2019 IEEE 国际超声波研讨会(IUS);2019。[14] DZIEWIERZ J、RAMADAS SN、GACHAGAN A 等。一种用于NDE应用的包含六边形元件和三角形切割压电复合材料子结构的2D超声波阵列设计[S]。超声波研讨会;2009年。[15]徐婷,赵玲,姜哲,等。低串扰、高阻抗的压电微机械超声换能器阵列设计
List of Figures Figure 1 Schematic diagram describing the design of a Lithium-Ion Battery [3] .................................... 5 Figure 2 Equivalent circuit for an electrochemical cell ........................................................................... 6 Figure 3 Typical Voltage behavior of the Li-Ion Battery.不同C率的不同曲线[6] ......... 7图4锂离子电池的电压作为不同C率的能量的函数[6]。............................ 9 Figure 5 Operation of a typical Li-ion battery [11] ................................................................................ 13 Figure 6 Typical cycle life of a Li-ion battery cell [11] ........................................................................... 13 Figure 7 Variability in demand and in net load in a challenging week on an area in USA.[31] ..................................................... 27 Figure 19 Maps of Chilean Photovoltaic Power Potential with the location of Campos del Sol [30] ... 27 Figure 20 Irradiation for different longitudes in a) Iquique and b) Copiapó's latitude.[35] ................ 28 Figure 21 Location of the project Campos del Sol PV Power Plant.来自Google Maps的照片。在每个跟踪器中都有28个模块。.................................................... 35 Figure 28 Shading analysis of the PV modules and the trackers ........................................................... 35 Figure 29 Campos del Sol considered losses.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................例如四个不同的日子产生的PV功率,例如。 来自CEN网站。............................................................................................................................................................................................................................................................................................................................................................................................................................................................................例如四个不同的日子产生的PV功率,例如。来自CEN网站。来自CEN网站。................... 15 Figure 8 Power output of a PV plant in Southern California for a partly cloudy day ............................ 15 Figure 9 Balancing Technologies ........................................................................................................... 17 Figure 10 Basic concept of primary frequency regulation through ESS [23] ........................................ 19 Figure 11 : Frequency Control Methods and Relevant Time Scales in US [24] ...................................................................................................................图12频率控制时间尺度(激活时间是德国的示例)[24] ........................................................................................................................................................................................................................................................................................................................................................................................................................................... ................................................................................................ 23 Figure 16 Forecast of monthly power generation for Ollagüe's microgrid [27] ................................... 24 Figure 17 Maps of Chilean Global Horizontal Irradiation with the location of Campos del Sol [30] .... 26 Figure 18 Typical geography of the northern regions of Chile...................................................... 42 Figure 35 Energy profile produced by the PV in 25 years, with linear reduction of the power............................................................... 57 Figure 40 Variation of the relative initial cost of the BESS according to the size considered................................................... 60 Figure 44 Carrera Pinto 2020 Energy Price............ 30 Figure 22 Panoramic view of the area where the PV Plant will be situated (Google Maps) ................ 31 Figure 23 Carrera Pinto Interconnection Substation ............................................................................ 31 Figure 24 Irradiance of the area of Campos del Sol PV Plant ................................................................ 32 Figure 25 Module data .......................................................................................................................... 33 Figure 26 Inverter Data ......................................................................................................................... 34 Figure 27 Tracker structure......................................................................................... 36 Figure 30 Campos del Sol computed annual PV Power ........................................................................ 37 Figure 31 Campos del Sol generated Power for the first week of the year, computed with SAM ....... 38 Figure 32 Block Diagram of the Considered System ............................................................................. 40 Figure 33 Simplified Electric考虑系统的互连方案。................................ 43图36模型的温度评估模型................................................................................................................................. 57 Figure 41 Carrera Pinto Substation Energy Prices for different days of year 2020............................... 58 Figure 42 Considered Price Scenario ..................................................................................................... 59 Figure 43 Prices Profile Scenarios for the first three days of January........................................................... 65 Figure 45 NPV and Cash Flow for the BESS 50 MW 50 MWh................................................................ 66
经常询问的问题问:为什么Origin计划在Eraring Power Station建造电池?Origin在定位我们的发电投资组合以支持澳大利亚向可再生能源的过渡方面发挥着重要作用。在Eraring上进行的大型电池将有助于起源更好地支持可再生能源并为客户提供可靠的供应。该站点与发射基础设施,负载中心的现有链接以及原产地拥有的适当区域土地的可用性也使Erararing成为大型电池的理想位置。在Eraring上进行的大型电池还将在支持Origin的有序过渡中从燃煤发电和新南威尔士州电力基础设施路线图的目标中发挥作用,这将使新南威尔士州的可再生能源供应大幅提高。问:电池如何支持向可再生能量和脱碳的过渡?可再生能源(例如来自太阳能和风能)需要“升高”能力,在需求较高时或可再生能源供应量低时,可以为电网提供额外的电力。电池是“升高”能力的一个例子,可以将能量从可再生供应的丰富时期转移到可再生供应量低的时期。该项目还将能够提供频率控制辅助服务(FCAS),系统重新启动辅助服务(SRAS),以及快速频率响应和合成惯性 - 当前正在考虑的国家电力市场(NEM)中的安全服务。此类服务有助于稳定电力系统,因为大发电机正在从系统中退休。Q.Q.什么是“正面”能力?“升高”能力或网格上升意味着要在一段时间内保持电源的输出,例如风和太阳能。容量是系统以全功率放电运行时产生的电量。问:电池将如何充电?电池电池通过现有的开关场连接到国家电网,并将被包括可再生能源在内的市场中的各种形式的发电机充电。目的是,当可再生资源(尤其是太阳能)大量(通常在一天中的中间)时,电池将从网格中充电。存储一段时间后,电池将在高峰时段释放该能量回到系统中,从而抵消了460MW的化石燃料发电。问:电池在哪里? Eraring位于悉尼以北约120公里,在新南威尔士州纽卡斯尔以南40公里处。 电池项目区域约为25公顷,位于现有发电站西南部Eraring Power Station现场南部的原始土地上。 该位置靠近发电站的变速箱开关场,可定位以最大程度地减少视觉影响。 问:您期望什么时候完成工作,电池充分委托? 我们预计该阶段的电池之一将在2025年底完成并委托。 问:组成该项目的组件是什么? 电池储能系统(BESS)项目区域约为25公顷,位于EPS站点的南部。 Eraring Bess将包括:问:电池在哪里?Eraring位于悉尼以北约120公里,在新南威尔士州纽卡斯尔以南40公里处。电池项目区域约为25公顷,位于现有发电站西南部Eraring Power Station现场南部的原始土地上。该位置靠近发电站的变速箱开关场,可定位以最大程度地减少视觉影响。问:您期望什么时候完成工作,电池充分委托?我们预计该阶段的电池之一将在2025年底完成并委托。问:组成该项目的组件是什么?电池储能系统(BESS)项目区域约为25公顷,位于EPS站点的南部。Eraring Bess将包括: