摘要 — 通过通信网络运行的同步发电机和储能系统的集成给电网带来了新的挑战和脆弱性,网络攻击可能会破坏传感器测量或控制输入并中断频率调节等功能。本文提出了一种防御方法,用于设计施加在每个发电和储能单元上的弹性运行约束,以防止任何攻击序列将系统频率推向不安全状态。弹性操作约束是通过使用电力系统可达集的椭圆近似来找到的,从而导致具有线性矩阵不等式的凸优化问题。具有同步发电和储能的单区域电力系统的数值结果表明,弹性约束如何提供安全保障,以防止影响频率测量或控制器设定值的任何类型的攻击。
摘要 - 全球能源市场朝着补贴范式的趋势,可再生能源(RES)必须提高其水平的能源成本。此外,与天气相关的不确定性和惯性损失越来越挑战电力系统的运行。因此,RES必须适应其整合。在这种情况下,混合动力厂会更有效和灵活。vattenfall在不同配置的公用事业量表混合发电厂(HYPP)的部署中处于行业的最前沿。在这项工作中,我们提出了一个HYPP频率支持策略,在共同耦合的同一点下协调风,太阳能和电池。此外,我们还提供了50 MW HYPP HARINGVLIET进行的许多测试,目前在荷兰完全运行。
• 无需 OEM SCD 或自定义部件编号 • 订购代码定义 EEE 谱系和 QA 级别 • MIL-PRF-55310/38534 等效筛选选项 • 明确定义有源设备的辐射耐受性 • 多种封装、输出和电源电压选项 • 无需额外的平台资格 • 更短的交货时间和更低的总体成本 • 提高设计效率(BOM 创建和输入) • 支持标准构建/筛选/测试文档 • 鼓励高可靠性流程一致性 • 采购和制造规模经济 • 修订“实时”发布到 Vectron 网站 • 利用超额快速设计 • 设计飞行传统
摘要 发电机的转速影响产生的频率和电压,而这种变化会影响负载侧。为此,我们需要一种能够优化微水力发电性能的控制设备。因此,我们需要一种通过应用负载频率控制 (LFC) 来优化微水力发电性能的技术。LFC 通过实施超导磁能存储 (SMES) 和电容能存储 (CES) 而设计,此应用将提供功率补偿以减少甚至消除由消费者电力负载变化引起的频率振荡。为了获得最佳的微水力发电性能,必须为 SMES 和 CES 设置正确的参数。本研究中的 SMES 和 CES 参数调整提出使用 Bat 算法。该算法使用的目标函数是优化积分时间绝对误差 (ITAE)。对于性能分析,在负载变化的情况下测试系统,然后分析调速器、涡轮机和系统频率响应。为了测试系统的可靠性,本研究采用了几种控制、SMES、CES 与基于比例、积分、微分 (PID) 的传统控制相结合的方案。正确的控制参数将更优化地改善系统性能。最佳系统性能可以从调速器、涡轮机的响应和频率的最小超调以及系统切换到稳定状态的快速稳定时间中看出。
摘要:近年来,电力系统已从传统发电厂转向可再生能源 (RES) 整合。这一趋势正在许多发展中经济体中形成,包括西非电力联盟 (WAPP)。然而,由于底层可再生能源的多变性和间歇性,RES 的整合强调了电网的安全性和稳定性。电池储能系统 (BESS) 被认为是解决 WAPP 互联输电系统 (WAP-PITS) 中频率控制挑战的一种可能解决方案,有助于适应高水平的 RES。本文分析了 BESS 在 WAPPITS 中提供主要频率控制储备的应用和有效性。分析基于使用基于 WAPPITS 历史频率测量的开环模型进行的数值模拟。简化模型提供了 BESS 装置频率控制和充电状态 (SOC) 恢复逻辑的一阶分析。本研究表明,基于下垂的控制策略仅能对网络中对称和快速的频率振荡作出反应,可能适合调节系统中的 BESS。此外,它还表明,仅部署 BESS 并不能解决频率控制问题,需要对频率控制服务进行深入修订,主要涉及传统发电厂。
2. FCR 作为大型 BESS 的单一应用在经济上并不盈利 • 价格低廉且难以预测,市场需求不断变化 • 可能出现新的商业模式,尤其是混合概念
摘要 在过去的二十年里,变速风力涡轮机 (VSWT) 逐渐取代了传统发电。然而,风速的变化和随机性可能导致较大的频率偏差,特别是在风能集成度高的孤立电力系统中,这种集成会导致惯性不足。本文提出了一种混合水电-风电-飞轮频率控制策略,用于 100% 可再生能源发电的孤立电力系统,同时考虑风力变化和发电机跳闸。VSWT 和飞轮包括传统的惯性频率控制。频率控制策略涉及 VSWT 的转速和飞轮的充电状态 (SOC) 变化,这可能会影响机械元件的磨损并降低频率控制作用的效率。水电控制器还会跟踪 VSWT 的转速偏差和飞轮 SOC,以相应地修改发电功率。这种混合频率策略显著减少了频率偏移、VSWT 的转速偏差和飞轮的 SOC。为了减少水力发电厂的磨损,作者提出了一种额外的控制策略并进行了评估。本文还介绍了基于位于 El Hierro(西班牙加那利群岛)的孤立电力系统的案例研究结果,并进行了广泛讨论。
当频率降至 59.98Hz 以下时,表示电力供应略有不足,AFC 系统启动,通过 BESS 增强变电站电源。在 59.98-59.75Hz 之间,系统引入 9-48% 的 BESS 容量(直流到交流)。当频率降至 59.50Hz 以下时,表示电力供应更为严重,BESS 将提供总能量输出(图 2)。指定的容量百分比(“设定点”,见图 4)为
可再生能源和微电网的指数升高带来了通过使用储能系统来确保低渗透网格中频率稳定性的挑战。本文回顾了交流电源系统的频率响应,突出了其不同的时间尺度和控制动作。此外,它指出了依靠同步机和低惯性系统的高惯性互连系统之间的主要区别,这些系统具有转换器相互交流的高渗透率。基于这些概念并采用一组假设,它得出了代数方程,以评估提供惯性和主要控制的能源存储系统。方程与储能技术无关,对系统非线性的鲁棒性,并依赖于通常由系统运营商,行业标准或网络代码定义的参数。使用这些结果,作者提供了一个逐步的过程,以大小转换器交换器交换器混合储能系统的主要组件。最后,北海的风能石油和天然气平台的案例研究以数值示例证明了建议的方法1)可以在实际问题中应用于实际问题和2)2)允许系统设计人员根据提供的频率控制类型来利用不同的技术并为每个存储设备和转换器设置特定要求。
摘要 本文介绍了 BESS 运行对高压输电网的影响。本文主要考虑了有功功率与频率之间的关系问题。检查了 BESS 如何影响一次频率调节过程。对三种频率调节器进行了建模,它们是整个储能调节系统的一部分。实施了“下垂”型和 PI 调节器模型。此外,由于通过电力电子转换器连接到网络的电源份额增加,从而导致系统惯性减小,因此决定研究虚拟惯性对系统频率响应的影响。为此,对将虚拟惯性引入系统的 PWM 转换器控制系统进行了建模。